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ABSTRACT 

 

In the southwestern United States persistent aridity has led to the development of a system of 

institutions to manage and distribute limited water resources. The management of such systems 

was based on an imperfect understanding of potential variability in the region’s climate. With 

anthropogenic warming already altering the Southwest’s climate, understanding the past 

potential for extreme drought and the role temperature played during drought will provide a 

baseline for water managers to anticipate risks to this system. Tree-ring reconstructions of 

climate provide a useful metric for assessing past shifts in precipitation, streamflow, and 

temperature. Despite an abundance of multimillennial hydroclimate reconstructions for the 

Southwest, few contemporaneous, skillful tree-ring reconstructions of temperature are similarly 

available. In an attempt to address this gap, I evaluate the complex climate sensitivity of Rocky 

Mountain bristlecone pine (Pinus aristata Engelm.), a long-lived, climatically sensitive proxy 

with the potential to be utilized in temperature and hydroclimate reconstructions.  

 

The first study of the dissertation begins with an extensive evaluation of climate sensitivity 

across ten new and previously sampled collection sites. I identified a robust spring hydroclimate 

response throughout the lower elevation collections and a weaker but still significant late 

summer temperature response intermixed with hydroclimate sensitivity in the upper elevation 

collections. In the second study, I utilized the Vaganov-Shashkin proxy system model to 

simulate tree-ring growth in P. aristata, identifying temperature thresholds controlling climate 

sensitivity. My results provided further confirmation of the late-spring/early-summer 
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hydroclimate response in low elevation P. aristata. The upper elevation P. aristata were found to 

respond to temperature variability under cooler pre-anthropogenic warming conditions. This 

provides a direction for future research to investigate past temperature sensitivity at sites that no 

longer contain a clear temperature response or to aid in the identification of locations where 

cooler growing season conditions may still produce a temperature sensitivity in P. aristata 

growth.  

 

For the final study, I used the results from the climate sensitivity analysis and proxy system 

modeling to develop the first April-June drought index reconstruction for the Southern Rockies. I 

utilized this reconstruction to evaluate the multi-century relationship between winter snowpack 

and spring drought conditions in the Rio Grande headwaters. Initial analysis of the observed 

relationship between winter snowpack and spring hydroclimate conditions indicated the 

potential, albeit rare, for extreme spring conditions to ameliorate or exacerbate winter moisture 

conditions and alter streamflows. I found no consistent multi-year relationship between the new 

spring drought index reconstruction and an existing snowpack reconstruction, but did identify 

periods of simultaneous fluctuations that coincided with extreme drought and pluvial events, and 

provided evidence that during major drought events dry spring conditions may have exacerbated 

the severity of winter moisture deficits. Overall, the findings in this body of research confirm 

that P. aristata is a climatically sensitive species, capable of providing sufficient growth 

response to construct a hydroclimate reconstruction. Additionally, the identification of a late 

summer temperature response using both climate sensitivity analysis and proxy system modeling 
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provides a solid foundation to pursue the development of a skillful, multi-millennial 

reconstruction of temperature using P. aristata.  
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CHAPTER 1: INTRODUCTION 

 

1.1 STATEMENT OF PROBLEM 

The aridity that defines the climate of the southwestern United States (hereafter Southwest) is 

also a perpetual risk to the region. The ever-present threat of water scarcity led to the 

development of a complex network of inter-state agreements, international treaties, physical 

infrastructure, and political institutions that distribute the limited water supply and provide a 

buffer during scarcity (Stegner, 1992). Unfortunately, it was a system built with a limited 

understanding (or, in part, a willful ignorance) of the potential for extreme multi-decadal drought 

(Kuhn and Fleck, 2019; Reisner, 1993) and under the assumption of hydrologic stationarity that 

anthropogenic climate change is likely to alter (Milly et al., 2008). Without a baseline 

understanding of past droughts, the managers of this complex water network are using an 

incomplete framework to anticipate not only the risk of extreme drought, but the risk of extreme 

drought with the added impact of climate change.  

 

Fortunately, the science of dendrochronology provides a way to reconstruct past climate 

variability. During the period when the Southwest’s water management system was under 

development, scientists began to recognize many of the region’s tree species responded to 

fluctuations in hydroclimatic variability with corresponding variations in ring widths (Douglass, 

1920, 1919; Schulman, 1938). Employing the analysis of tree-ring widths led to the development 

of multi-century precipitation (e.g., D’Arrigo and Jacoby, 1991; Knight et al., 2010; Stahle et al., 

2009), soil moisture (e.g., Cook et al., 2004, 1999), and streamflow reconstructions (e.g., Meko 
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et al., 2007; Stockton and Jacoby, 1976; Woodhouse et al., 2006) for the Southwest. These 

reconstructions provided context for the instrumental records, identifying past drought conditions 

much more severe than those seen since European settlement (Cook et al., 2010; Douglass, 1929; 

Woodhouse et al., 2010; Woodhouse and Overpeck, 1998). In recent years there has been an 

increasing recognition of the role higher temperatures play in exacerbating drought severity and 

reducing the volume of snowpack-derived streamflow (Lehner et al., 2017; Udall and Overpeck, 

2017; Williams et al., 2020; Woodhouse et al., 2016). With earth system models projecting a 

2.7°C increase in regional temperatures by 2100 (Gonzalez et al., 2018), it is even more crucial 

to understand the role temperature played during past megadroughts. Despite the plethora of tree-

ring derived hydroclimatic reconstructions (Ljungqvist et al., 2020; Stahle et al., 2020), the 

Southwest has a limited number of temperature sensitive tree-ring chronologies of similar length 

or coverage (PAGES2k Consortium, 2017; Wilson et al., 2016). 

 

To address the knowledge gap of how temperature interacts with the Southwest’s hydroclimate, 

this study examines the complex climate sensitivity of Rocky Mountain bristlecone pine (Pinus 

aristata Englem.) and the potential for climate reconstruction using this long-lived species. 

Found among the highest mountains in Arizona, Colorado, and New Mexico (Schoettle and 

Coop, 2017), P. aristata has long been considered a candidate species for climate reconstruction 

(Schulman, 1956). However, limited published research and an intermixture of temperature and 

precipitation signals contained in the tree-ring measurements (LaMarche Jr and Stockton, 1974) 

have limited its utilization. New methodologies developed for Great Basin bristlecone pine 

(Pinus longaeva D.K. Bailey), a sister taxa of P. aristata, have led to breakthroughs in 
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disentangling climatic responses (Bruening et al., 2017; Bunn et al., 2018; Tran et al., 2017), 

promising higher quality multi-millennia temperature reconstructions. This study applies the 

lessons learned from P. longaeva to unravel the complex climate sensitivity in P. aristata. First, 

an extensive evaluation of new and existing P. aristata tree-ring collections identified regional 

and site-specific climate sensitivities found in the ring-width measurements. Next, proxy system 

modeling of P. aristata growth mechanistically assessed the type and seasonality of climate 

responses. Finally, leveraging the conclusions of the first two studies, a reconstruction of the 

strongest climate signal contained within the ring widths of P. aristata was developed and 

utilized to evaluate the relationship between winter snowpack and spring hydroclimate in the 

headwaters of the Rio Grande. 

 

The findings of this study provide a solid foundation to pursue the development of a 

multimillennial summer temperature reconstruction using P. aristata. The presence of a late 

summer temperature response previously identified by LaMarche Jr. and Stockton (1974) was 

confirmed at upper elevation sites in Colorado and New Mexico, while proxy system modeling 

demonstrated that P. aristata climate sensitivity is determined by a threshold value of growing 

season mean temperature similar to P. longaeva (Bunn et al., 2018; Tran et al., 2017). The 

present intermixture of temperature and moisture response in P. aristata growth is likely caused 

by an increase in growing season mean temperature that has approached the threshold 

determining climate response. Sensitivity testing using the proxy system model, run under 

cooler, pre-industrial conditions, simulated a robust temperature response at high elevation, even 

under extreme drought scenarios. This suggests that the upper elevation P. aristata may have 
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been more reliably temperature limited prior to the 20th century increase in temperature. These 

findings may allow the evaluation of past temperature sensitivity at P. aristata sites that 

currently contain a weak or mixed temperature signal and aid future efforts to develop new 

temperature reconstructions using P. aristata. If successfully produced, these temperature 

reconstructions could improve our understanding of the role temperature played in the 

Southwest’s hydroclimate variability and give a broader context for the increasing temperatures 

in the region (Lukas and Payton, 2020). 

 

1.2 BACKGROUND 

1.2.1 Climate of the Southern Rockies 

The primary habitat for P. aristata is the Southern Rocky Mountains (or Southern Rockies) 

(Bailey, 1970), a region of central and southern Colorado and northern New Mexico. Two 

factors exert spatial control on precipitation in the Southern Rockies, the topography of the 

mountain ranges and interaction of subtropical and mid-latitude circulation regimes throughout 

the year (Sheppard et al., 2002). The steep topography of the Southern Rockies produces extreme 

orographic effects, resulting in annual precipitation rates above 1500 mm on the high, windward 

side of mountains, that drop to below 200 mm in valleys located leeward of nearby mountains 

(Daly et al., 1994). Located between 35°N and 40°N, the Southern Rockies are on the boundary 

between mid-latitude circulation to the north and the descending limb of the Hadley cell to the 

south. In the winter, the majority of precipitation is derived from mid-latitude cyclones moving 

east across the region, with orographic lift resulting in high precipitation totals and deep 

snowpacks throughout the upper elevations of the Southern Rockies, with the highest totals on 
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the western slopes of range (Lukas et al., 2014). This snowpack is the primary source of water 

for riparian systems, contributing to more than 70% of total streamflow for the Southern Rockies 

(Li et al., 2017).  

 

By the onset of the warm season (e.g., May), the upper-level westerly flow has moved north, and 

the sinking limb of the Hadley Cell circulation suppresses convective processes over the region 

leading to the development of high pressure ridge, low cloud cover, and increasing solar 

insolation (Adams and Comrie, 1997). By July, the heated air induces convection that counters 

the subtropical circulation, producing a thermal low over northern Mexico that draws moisture 

northward from the Gulf of California and westward from the Gulf of Mexico, producing the 

North American Monsoon (NAM, Adams and Comrie, 1997). The NAM exhibits much more 

temporal and spatial variability than the winter synoptic storms, but the generally southerly 

winds of the NAM consistently result in higher precipitation totals on the south facing slopes of 

the Southern Rockies (Sheppard et al., 2002).  

 

Daytime temperatures in the Southern Rockies are largely driven by solar insolation and lapse 

rate, with low elevation, south-facing slopes having the highest mean maximum temperatures 

and high elevation, north-facing slopes having the lowest mean maximum temperatures (Daly et 

al., 1994). At night, cold-air inversions may develop in closed basins resulting in cooler 

temperatures relative to the surrounding ranges (Reeves and Stensrud, 2009). Known as cold air 

pooling, this effect occurs during periods of atmospheric stability and low humidity (Lundquist 

and Cayan, 2007). These conditions allow shallow surface air layers to cool quickly, become 
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denser, and then descend downslope, collecting in topographic depressions in a manner similar 

to water runoff. In the Southern Rockies, this effect can occur at a regional scale producing 

significant temperature inversions in the intermontane valleys and at a local scale, influencing 

vegetation growth by inhibiting the survival of trees in topographic depressions subject to 

frequent cold air pooling (Coop and Givnish, 2007). 

 

1.2.2 Paleoclimate Reconstructions in the Southwest United States 

In the early 20th century, Andrew Ellicott Douglass founded the science of dendrochronology at 

the University of Arizona. Initially developed as a system to study sunspot cycles and date 

archaeological sites in the Southwest, Douglass recognized that the annual variability in tree-ring 

widths could also reconstruct hydroclimatic fluctuations in the region (Douglass, 1920, 1919, 

1914). Douglass’s student Edmund Schulman continued this investigation, developing tree-ring 

variability indices that corresponded to climate fluctuations throughout the Southwest 

(Schulman, 1956, 1942, 1938). Following the development of new statistical techniques allowing 

the production of climate reconstructions (Fritts, 1976; Fritts et al., 1971) the first streamflow 

reconstruction in the Southwest was completed for the Colorado River (Stockton and Jacoby, 

1976). Further advancements in chronology construction, signal identification in tree rings, and 

reconstruction methods (Cook and Kairiukstis, 2013; Meko, 1997) led to the prolific 

development of hydroclimate reconstructions throughout the Southwest, including multi-century 

reconstructions of precipitation (D’Arrigo and Jacoby, 1991; Knight et al., 2010; Stahle et al., 

2009), soil moisture (e.g., Cook et al., 2004, 1999), and streamflow (Meko et al., 2007; 

Woodhouse et al., 2006; Woodhouse et al., 2012). 
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The large collection of hydroclimate reconstructions in the Southwest has contributed to the 

recognition of 'megadroughts' with durations and magnitudes not seen in droughts observed in 

the modern instrumental period (Woodhouse and Overpeck, 1998). The late 13th century “Great 

Drought” was the first multi-decadal drought identified using tree-rings and was discovered 

during the archaeological research on the Colorado Plateau (Douglass, 1929). Further studies 

identified a late 16th century drought that was the most severe event in a 1000 year tree-ring 

record from New Mexico (D’Arrigo and Jacoby, 1991; Stahle et al., 2000), a mid-12th century 

drought, coinciding with lowest reconstructed streamflow volumes for the Colorado River (Meko 

et al., 2007; Woodhouse et al., 2010), and a 2nd century drought that was unsurpassed in 

intensity and duration in a 2000 year tree-ring record from southwestern Colorado (Routson et 

al., 2011). Evidence suggests the occurrence of North American megadroughts is the result of 

internal climate variability of the atmosphere-ocean system (Coats et al., 2015), although 

persistent periods of recurring megadrought, such as the Medieval Climate Anomaly (800-1300 

CE), may result from external forcing mechanisms, such as changes in solar insolation, or from 

internal variability not well sampled in the current instrumental record (Ault et al., 2018).  

 

With anthropogenic climate change already increasing temperatures in the Southwest (Vose et 

al., 2017), higher temperatures have been identified as reducing effective streamflow derived 

from snowpack (Lehner et al., 2017; Udall and Overpeck, 2017; Woodhouse et al., 2016). 

Evidence also suggests that the severity of the early twenty-first century drought is the result of a 

moderate drought pushed into extreme conditions by anthropogenic warming (Williams et al., 
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2020). Climate modeling suggests that even if precipitation totals were to remain fixed, increased 

warming will drive a significant increase in the risk of megadrought in the Southwest (Ault et al., 

2016). Despite the likely importance of temperature in past hydroclimate variability, recent 

compilations of tree-ring chronologies highlight the relative paucity in the spatial and temporal 

coverage of temperature sensitive tree-rings relative to that of hydroclimate sensitive tree-rings. 

In the Southwest, 11 of the 12 temperature sensitive tree-ring chronologies with at least 1000 

years of record are located either in California or Nevada (PAGES2k Consortium, 2017). In 

contrast the states of Colorado, New Mexico, and Utah have 23 hydroclimate sensitive tree-ring 

chronologies over 1000 years in length but not a single temperature sensitive tree-ring 

chronology covering a comparable time span (PAGES2k Consortium, 2017; Stahle et al., 2020). 

 

Temperature sensitivity in Southwest tree-ring widths was first analyzed in the 1970s with the 

application of empirical orthogonal functions (EOF) to isolate temperature responses (Blasing 

and Fritts, 1976) and the use of frequency analysis to isolate multi-year temperature sensitivity 

from the annual hydroclimate variability (LaMarche, 1974). The first regional temperature 

reconstruction with tree-ring widths was an extension of earlier EOF analysis producing an 

annual (December to November) reconstruction of temperature (Fritts and Lough, 1985). 

Temperature reconstructions soon shifted towards the use of maximum latewood density rather 

than ring-width due to a stronger temperature response. Extensive sampling for maximum 

latewood density was done throughout western North America in the 1980s (Schweingruber, 

1988) which resulted in a set of western North America temperature reconstructions (Briffa et 

al., 1992; Schweingruber et al., 1991). Several localized temperature reconstructions using tree-
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ring widths were still constructed after the introduction of maximum latewood density 

methodologies. These included a summer temperature reconstruction using foxtail pine (Pinus 

balfouriana Balf.) in the Sierra Nevada (Graumlich, 1993), a mean-maximum annual 

temperature reconstruction using P. aristata in the southern Colorado Plateau (Salzer and 

Kipfmueller, 2005), and a summer temperature reconstruction using the P. longaeva in the Great 

Basin (Salzer et al., 2014a). The Great Basin and southern Colorado Plateau reconstructions were 

notable for their multi-millennia time span, but recent efforts to develop summer temperature 

reconstructions for the Northern Hemisphere have not incorporated either set of chronologies due 

to their relatively weak temperature sensitivity (Büntgen et al., 2020; Wilson et al., 2016).  

 

The relatively weak climate sensitivities of the bristlecone chronologies may be explained by the 

intermixture of temperature and hydroclimate growth signals at upper-elevation bristlecone sites. 

Evidence suggests that the inter-mixture of climate sensitivities in P. longaeva are the result of 

topographically induced microclimates (topoclimate) resulting in highly localized and variable 

growing season conditions (Bunn et al., 2011). Additional research suggests that P. longaeva are 

temperature sensitive only within a narrow elevational band below upper tree line, and the recent 

increases in temperature may have moved P. longaeva on south facing slopes out of this band 

and into hydroclimate sensitivity (Salzer et al., 2014b). Efforts to counteract these complicating 

factors and determine temperature thresholds controlling climate sensitivity have included the 

use of cluster analyses on P. longaeva ring-width growth signals and fine-scale topoclimate 

modeling (Bruening et al., 2017; Tran et al., 2017). This work led to the simulation of P. 

longaeva tree-ring growth using proxy system models to determine the timing of changing 
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climate responses (Bunn et al., 2018) and the development of multimillennial tree-line position 

mapping to determine proximity to upper tree line during the establishment of now remnant P. 

longaeva samples (Bruening et al., 2018). 

 

1.2.3 A History of Pinus aristata Dendrochronology 

P. aristata grows primarily at high elevation in central and southern Colorado and northern New 

Mexico, with an isolated stand present at tree line in the San Francisco Peaks of northern 

Arizona (Gilbert et al., 2019). P. aristata is typically found on steep, south-facing slopes at 

elevations ranging from 2750 m to 3650 m (Baker, 1992). P. aristata experiences cambial 

dieback after several centuries of growth, resulting in the formation of “strip-bark” growth 

(Brunstein, 1996). The dense and resinous wood of P. aristata is extremely resistant to decay and 

deterioration, resulting in the preservation of remnants hundreds of years after the death of the 

tree (Carrara and McGeehin, 2015). 

 

The first recorded dendrochronologic investigation of P. aristata was in 1944 by Edmund 

Schulman in Arizona and Colorado (Schulman, 1956). His P. aristata collection in central 

Colorado “indicated maximum ages of the order of 700-800 years,” while a sample in northern 

Arizona contained over 1200 rings; however, he did not determine absolute ages for either site 

(Schulman, 1956). Until 1970, both Great Basin (P. longaeva) and Rocky Mountain bristlecone 

pine (P. aristata) were assumed to be the same species (Bailey, 1970); therefore, Schulman 

assumed the P. aristata were part of a continuum of a single bristlecone species which attained 

increasingly older ages from east to west (Schulman, 1956). Further investigations therefore 
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focused on the older and more charismatic western bristlecones (P. longaeva), with researchers 

developing multi-millennial chronologies (Ferguson, 1969) and identifying individual P. 

longaeva approaching 5000 years in age (Currey, 1965; Schulman, 1958, 1954). 

 

It was not until 1973 that Pauline Krebs re-evaluated the dendrochronological potential of P. 

aristata, constructing the first cross-dated chronologies of P. aristata and identified living trees 

over 1,500 years in age (Krebs, 1973). Unfortunately, this investigation did not extend beyond 

constructing chronologies. The following year, a climatic response analysis of both P. aristata 

and P. longaeva was conducted, using chronologies from throughout the Southwest. The results 

indicated both temperature and precipitation sensitivity in the P. aristata collection, although the 

precipitation sensitive P. aristata sites were highlighted as having the greatest reconstruction 

potential (LaMarche Jr and Stockton, 1974). Samples from this investigation were also used to 

date frost rings formed during extremely cool periods caused by volcanic eruptions (LaMarche 

and Hirschboeck, 1984). Work with P. aristata continued sporadically with a technical report on 

increasing carbon dioxide levels and tree growth (Graybill, 1985), a fire history in northern New 

Mexico (Touchan and Swetnam, 1995), and a second P. aristata-specific frost ring 

reconstruction in Colorado (Brunstein, 1996). One of the researchers during this period, Craig 

Brunstein, was notable for identifying the oldest living P. aristata in Colorado (Brunstein and 

Yamaguchi, 1992) and developing a detailed guide to bristlecone growth and morphology 

(Brunstein, 2006) all while pursuing this work as an amateur dendrochronologist. 
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The first climate reconstruction using P. aristata tree-ring chronologies as proxies was 

developed in 2005. Samples from the isolated San Francisco Peak stand in Arizona were used in 

a 2262-year temperature reconstruction for the Colorado Plateau (Salzer and Kipfmueller, 2005). 

This was followed by the development of two new moisture sensitive chronologies in Colorado, 

a 2200-year chronology indicating an extreme 2nd century megadrought (Routson et al., 2011) 

and an 1800-year chronology used to evaluate decadal-scale moisture variability in the upper 

Arkansas River basin (Woodhouse et al., 2011). Additional recent work with P. aristata includes 

a localized temperature reconstruction, using oxygen isotopes, at one sampling site on the Front 

Range of Colorado (Berkelhammer and Stott, 2012), an annual precipitation reconstruction at 

Black Mountain, Colorado, the site of the oldest living P. aristata (Miller, 2014), and a 

radiocarbon-dated (not dendrochronologically cross-dated) assessment of remnant P. aristata 

indicating trees growing above the present tree line in central Colorado between 700 BCE and 

1200 CE years (Carrara and McGeehin, 2015).   

 

1.3 ORGANIZATION OF DISSERTATION 

Until this study, only individual (or a limited set of) P. aristata chronologies have been evaluated 

for climate sensitivity, with no comprehensive investigation conducted to identify the type and 

seasonality of the P. aristata climate response across its range. Furthermore, no attempt has been 

made to disentangle potential mixed climate responses at P. aristata collection sites in a manner 

similar to the proxy system modeling conducted with P. longaeva. Finally, only one 

reconstruction of hydroclimate (Miller, 2014) and no reconstructions of temperature have been 

developed with the P. aristata chronologies from Colorado or New Mexico, despite the extreme 
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longevity of P. aristata and the potential for both temperature and hydroclimate sensitivity. In 

this dissertation, I address these deficits in our understanding of P. aristata through the studies 

described below.  

 

In my first study, I conduct an extensive evaluation of climate sensitivity across ten P. aristata 

collection sites, assessing common growth signals between chronologies and individual trees 

within collection sites. I identify a robust annual late spring/early summer hydroclimate growth 

response in low elevation collections, and at upper elevation sites I identify a weaker but still 

significant low-frequency, summer temperature response overlain with an annual early summer 

hydroclimate sensitivity. In my second study, I utilize the Vaganov-Shashkin proxy system 

model to simulate P. aristata tree-ring growth at an upper and a lower elevation sampling site. 

Sensitivity testing using pre-industrial temperature and moisture conditions is applied to simulate 

growth prior the modern observed record. The results provide further confirmation of the late 

spring/early summer hydroclimate sensitivity in lower elevation P. aristata, while identifying a 

positive temperature response in upper elevation trees when grown under cooler, pre-

anthropogenic warming conditions. The simulation of temperature response in upper elevation P. 

aristata provides a direction for future research to investigate this past temperature sensitivity at 

sites that no longer contain a clear temperature response or in locations where cooler growing 

season conditions may still provide a temperature limitation to growth.  

 

For the final study, I used the results from the climate sensitivity analysis and proxy system 

modeling to develop the first April-June drought index reconstruction for the Southern Rockies. 
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Initial analysis of the observational relationship between winter snowpack and spring 

hydroclimate conditions indicated the potential, albeit rare, for extreme spring conditions to 

ameliorate or exacerbate winter moisture conditions and alter streamflow totals beyond that 

predicted by prior winter’s snowpack. I utilized the April-June drought index reconstruction and 

a previously produced reconstruction of snowpack (Pederson et al., 2011) to evaluate the multi-

century relationship between winter snowpack and spring hydroclimate conditions in the Rio 

Grande headwaters. I found no consistent multi-year relationship between the two reconstructed 

indices, but did identify periods of simultaneous fluctuations that coincided with extreme 

drought and pluvial events, and provided evidence that during the major drought events, spring 

deficits may have exceeded the severity of winter deficits. 

 

This dissertation is formatted per University of Arizona Graduate College guidelines as a 

Manuscript/Article Dissertation with three research projects described in three appendices. Each 

appendix is formatted as a publishable manuscript complete with detailed methods, findings, and 

conclusions. I am the lead author for each manuscript, with my advisor Dr. Connie Woodhouse 

as my co-author. Chapter 2 contains a summary of the major objectives and findings for each of 

the three studies that comprise my dissertation research. The first study was submitted and 

published in Dendrochronologia in 2021 and is included as Appendix A (Tintor and Woodhouse, 

2021). The second study was written and prepared as a manuscript suitable for submission to 

Environmental Research Letters and is included as Appendix B. The third, and final, study was 

written and prepared as a manuscript suitable for submission to Water Resources Research and is 

included as Appendix C.  
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CHAPTER 2: PRESENT STUDY 

 

2.1 PRESENT STUDY 

The present study is focused on disentangling the complex climate response of P. aristata by 

identifying the type and seasonality of climate sensitivity contained within the tree-ring widths of 

this species. Initially motivated by the potential development of a temperature reconstruction, 

this study uncovered a robust spring hydroclimate sensitivity in P. aristata suitable for the 

production of a novel multi-century reconstruction. The study did identify a positive, multi-year 

response to late summer temperatures in upper elevation P. aristata and simulated tree-growth 

modeling similarly showed a strong, positive temperature response at high elevation sites prior to 

late 20th century warming. Additional work is needed to fully isolate the temperature signal 

contained with P. aristata, but this study presents a foundation to pursue the development of a 

skillful temperature reconstruction for the Southern Rockies using P. aristata. The following 

sections summarize the major objectives and findings for the three studies that comprise my 

dissertation research. 

 

2.2 APPENDIX A - THE VARIABLE CLIMATE RESPONSE OF ROCKY MOUNTAIN BRISTLECONE 

PINE (PINUS ARISTATA ENGELM.) 

The semi-arid western United States has numerous tree-ring proxies of moisture that capture 

extreme droughts with magnitudes of severity greater than those captured by instrumental 

records. Recent increases in temperature have been shown to exacerbate drought and reduce 

streamflow, but our understanding of the role temperature played in past droughts is limited due 
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to the low number of tree-ring based temperature proxies for the region. The goal of this study is 

to evaluate the climate sensitivity of Rocky Mountain bristlecone pine (P. aristata) and evaluate 

its potential for developing new multi-century proxy records of both temperature and 

precipitation in an effort to fill this gap. To do this, we used five new and five previously 

collected P. aristata ring-width chronologies to answer the following research questions: 

 

• What do the regional set of chronologies tell us about P. aristata response to climate and 

how it varies by location and site characteristics? 

• Within each sampling site, is the climate sensitivity consistent among trees that make up 

the site chronology, or is there intra-site variability as documented in previous P. 

longaeva studies? 

• What is the potential for developing long moisture and/or temperature reconstructions 

from this set of data? 

 

To answer these questions, I isolated the dominant patterns of growth variability in the P. 

aristata ring-width datasets using empirical orthogonal function (EOF) analysis (Preisendorfer 

and Mobley, 1988) on chronologies and on individual trees. I also used a modified form of 

hierarchical cluster analysis (Kipfmueller and Salzer, 2010) applied to a matrix of simple 

correlations between individual tree samples and local climate data to isolate a third set of tree 

growth patterns. Following the isolation of growth patterns, I constructed time series using the 

strongest common growth signals and correlated each with a regional gridded climate dataset to 
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assess the spatial relationship between the P. aristata data and regional climate over the 20th 

century.  

 

The results showed evidence of a mixed climate response within high elevation, upper-tree line 

sampling sites as previously observed with P. longaeva collections. The strongest climatic signal 

identified was a June drought stress signal (growth corresponded positively to precipitation and 

negatively to maximum temperature), which was present at multiple sampling sites. A low 

frequency positive correlation with late summer temperatures was also found among trees that 

simultaneously contained a weak June drought stress signal at higher frequencies. The June 

drought stress signal contained within the ring-width data was identified as having the strongest 

potential for reconstruction. Remnants collected for this study are the oldest crossdated remnants 

identified in Colorado and New Mexico with respective start dates of 847 BCE and 778 BCE.  

 

2.3 APPENDIX B - UTILIZING THE VAGANOV-SHASHKIN MODEL TO SIMULATE CLIMATE 

SENSITIVITY IN ROCKY MOUNTAIN BRISTLECONE PINE (PINUS ARISTATA ENGELM.) 

Trees growing at the elevational or latitudinal limits of growth have long been utilized as high 

resolution proxies of past temperature variability. Recent studies of P. longaeva have highlighted 

the co-occurrence of a moisture growth signal alongside elevation driven temperature sensitivity 

producing weak correlations with both climate parameters (Bunn et al., 2011; Salzer et al., 

2014b). Similar mixed temperature and moisture signals have also been identified in high 

elevation, tree-line P. aristata (Tintor and Woodhouse, 2021). Building on the work with P. 

longaeva, this study seeks to disentangle the mixed climate signals and determine if P. aristata 
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located at tree line are currently temperature limited or were limited in the past under cooler 

general conditions. Two objectives were developed to answer this question: 

 

• Develop an understanding of the current dynamics of growth limitation related to climate 

in P. aristata, determining their utility as temperature or moisture proxies. 

• Evaluate changes in P. aristata climate sensitivity during cooler climates observed in 

paleoclimate records, thereby determining the stability of their climate sensitivity. 

 

To address the first objective, I used the Vaganov-Shaskin Model (VSM) (Anchukaitis et al., 

2020; Vaganov et al., 2011, 2006) to simulate 28 years (1989-2016 CE) of P. aristata tree-ring 

growth at two locations in New Mexico, an upper elevation tree-line site and a lower elevation 

site. I used a series of temperature sensors placed at each sampling site to modify a multi-decade 

temperature record to represent temperature variability more accurately at each sampling 

location. These two daily temperature datasets and daily PRISM precipitation data (Daly et al., 

1994) were used to simulate tree-ring growth in the VSM. I addressed the second objective by 

developing daily climate datasets adjusted to simulate cooler and drier conditions during the late 

16th century Southwest megadrought and then ran the VSM with these adjusted datasets to 

identify climate sensitivity under the adjusted conditions. 

 

The results showed the lower elevation P. aristata were consistently moisture limited during the 

late spring/early summer period throughout the 28 year simulation. The upper elevation trees 

were not robustly temperature limited and were shown to vary in strength and timing of moisture 
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limitation depending on the annual growing season temperature. Sensitivity tests did not change 

the moisture response in the lower elevation trees, but did induce temperature limitation in the 

upper elevation trees, suggesting that upper elevation tree growth was previously temperature 

limited even during periods of extreme drought. Evidence suggests that at some point prior to 

modern VSM run the upper elevation site passed a seasonal growing temperature threshold 

similar to the one identified in P. longaeva (Tran et al., 2017) resulting in a shift from 

temperature to moisture sensitivity. These results show the robustness of the late spring/early 

summer drought signal in P. aristata at lower elevation while also highlighting the current 

instability of the climate response at upper elevation. The findings do provide evidence of past 

temperature sensitivity under cooler conditions and the potential for P. aristata temperature 

sensitivity at locations where cooler growing season temperatures currently occur.  

 

2.4 APPENDIX C - THE INFLUENCE OF RECENT AND RECONSTRUCTED SPRING HYDROCLIMATE 

CONDITIONS ON THE RIO GRANDE HEADWATERS 

The headwaters of the Rio Grande in Colorado are the primary source of streamflow for the 

upper Rio Grande, despite constituting a relatively small portion of the full watershed (Blythe 

and Schmidt, 2018). The majority of spring and summer streamflow originating in the 

headwaters is produced by melting snowpack, allowing annual prediction of streamflow using 

systematized measurements of snowpack (Pagano et al., 2009). Despite this close relationship, 

recent years have seen a decline in the power of snowpack to predict streamflow (Pagano et al., 

2004) and an increasing influence of spring hydroclimate conditions on streamflow totals in the 

Rio Grande (Chavarria and Gutzler, 2018). For example, in 2021 it appeared that wetter, cooler 
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conditions during the months of April through June were responsible for an increase in spring 

streamflow totals above that predicted by snowpack measurements. Given the potential for 

spring conditions to influence seasonal streamflow totals in an already stressed and over-

apportioned hydrologic system, a better understanding is needed of the relationship between 

winter snowpack and spring hydroclimate conditions and associated impacts on streamflow. 

Therefore, in an effort to improve this understanding, two objectives were developed for this 

study:  

 

• Evaluate the relationship between snowpack, spring hydroclimate conditions, and 

streamflow volumes of the Rio Grande, identifying years when spring hydroclimate 

conditions coincide with spring streamflow volumes that are outside anticipated 

streamflows based on preceding winter snowpack.  

• Assess the pre-instrumental period relationship between snowpack and spring conditions 

over the past centuries in order to situate the observed relationship between snowpack 

and spring hydroclimate conditions within a broader historic context. 

 

To address the first objective, I used an April 1 snow water equivalent (SWE) index from 

Pederson et al. (2011), an April-June standardized precipitation evapotranspiration index (SPEI) 

from Vicente-Serrano et al. (2010), and April-June stream gage measurements from the Del 

Norte gage along the Rio Grande to represent, respectively, snowpack, spring hydroclimate 

conditions, and spring streamflow from 1937-2004 CE. Converting the datasets to percentiles, I 

first identified years when there was a significant difference (one quintile or more) between 
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spring hydroclimate and snowpack. Within the years with a significant difference between spring 

conditions and snowpack, I identified the years with a significant difference between spring 

streamflow and snowpack percentiles. There were only 16% of years where a significant 

difference between snowpack and spring hydroclimate conditions coincided with streamflow 

totals beyond the magnitude of snowpack-based predicted volumes. 

 

To address the second objective, I used the evidence gained from previous research on P. 

aristata to produce a new April-June spring hydroclimate (SPEI) reconstruction for the Rio 

Grande headwaters from 445-2004 CE. This reconstruction was compared with a previous 

reconstruction of snowpack (Pederson et al., 2011), giving a long-term context to the 

instrumental relationship between snowpack and spring hydroclimate. The percentile comparison 

process used for the observed datasets was also applied to the reconstruction datasets. The 

comparison results for the full reconstruction show the percent of years with significant 

differences between spring hydroclimate and snowpack was similar to the percent seen in the 

observed data. Breaking down the reconstruction comparisons by century indicated slight 

variability in relationship between snowpack and spring hydroclimate. Still, the magnitude of 

this variability was not large enough to indicate an increase in the influence of spring 

hydroclimate conditions on streamflow totals during past periods. When multi-decadal 

fluctuations in the two reconstructions are compared, the relationship is highly stochastic, 

indicating that there was no stable long-term relationship between snowpack variability and 

spring hydroclimate in the past. 

 



 35 

Finally, the relationship between snowpack and spring hydroclimate reconstructions was 

analyzed during the top five megadroughts and extreme pluvials during the reconstruction 

interval (445-2005). The extreme events were identified using North American Drought Atlas 

(NADA) Palmer drought severity index (PDSI) reconstruction data for the Rio Grande 

headwaters (Cook et al., 2004). The results suggest the pluvials coincided almost entirely with 

large winter snowpacks, not spring hydroclimate conditions, while megadroughts occurred 

during periods that experienced both snowpack deficits and dry springs. The full set of findings 

have implications for water managers in the upper Rio Grande basin. With increasing 

temperatures expected to decrease snowpack contribution to streamflow (Llewellyn and Vaddey, 

2013) the occurrence of cool, wet springs which increase streamflows relative to the snowpack-

based predictions will become increasingly important. Unfortunately, both the observed datasets 

and the reconstructed indices suggest that the occurrence of such cool, wet springs is rare and 

should not be expected to regularly supplement Rio Grande streamflow. 
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A.1 ABSTRACT 

Recent increases in temperature over the semi-arid western United States have been shown to 

exacerbate drought, reducing streamflow, and increasing stress on ecosystems. Our 

understanding of the role temperature played during drought in the more distant past is far from 

complete. While numerous tree-ring proxy records of moisture provide evidence for past extreme 

droughts in this region, few contemporaneous tree-ring proxy records of temperatures exist. This 

limits our ability to evaluate the variable influence of temperature on drought over past centuries 

and to contextualize the present interplay of moisture and temperature during more recent 

drought events. It is also important to understand the complexity of climatic interactions that 

produced drought under natural variability prior to evaluating the potential impacts of future 

climate change. In response to this knowledge gap, we undertook the first extensive evaluation of 

climate sensitivity in Rocky Mountain bristlecone pine (Pinus aristata Engelm.), focusing on the 

potential for developing new multi-century proxy records of both temperature and precipitation. 

We isolated dominant patterns of growth variability among trees from ten ring-width datasets 

across the Southern Rocky Mountains of Colorado and New Mexico and assessed their response 

to climate. We utilized both an empirical orthogonal function (EOF) analysis and a modified 

form of hierarchical cluster analysis to produce time series representing growth patterns in P. 

aristata. The results indicate a widespread June drought stress signal with a high potential for 

multi-millennial reconstruction. We also found a positive minimum temperature response during 

late summer, evident only at lower frequency and co-occurring at locations with the June drought 

stress signal. The potential for temperature reconstruction will require further investigation into 

the physiological linkages between P. aristata and climate variability. The presence of multiple 
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climate responses within P. aristata sampling sites highlights the need for particular care when 

including P. aristata in regional climate reconstructions.  

 

A.2 INTRODUCTION 

Tree-ring reconstructions of precipitation and streamflow in the semi-arid western U.S. provide 

an expanded framework for contextualizing both the severity of current droughts and the impact 

of predicted climate change over the next century (Meko and Woodhouse, 2011). In this region, 

an abundance of tree-ring based reconstructions exists for streamflow (e.g., Meko et al., 2007; 

Woodhouse et al., 2012, 2006), precipitation (e.g., D’Arrigo and Jacoby, 1991), and Palmer 

Drought Severity Index (PDSI) (e.g., Cook et al., 2004). These tree-ring reconstructions show 

that past “megadroughts” were of a duration and severity unlike any experienced in our limited 

window of modern scientific record keeping (Woodhouse and Overpeck, 1998). Climate 

modeling predicts intensified droughts in the semi-arid western U.S. due to an increase in 

temperature and decrease in precipitation (Jones and Gutzler, 2016), although precipitation 

trends are prone to higher uncertainty (Deser et al., 2014). In recent decades, warming alone has 

exacerbated moisture deficits, increasing the severity of droughts and impacting streamflow on 

the Upper Colorado River (Udall and Overpeck, 2017; Woodhouse et al., 2016) and the Rio 

Grande (Chavarria and Gutzler, 2018; Lehner et al., 2017). With mid-range climate change 

scenarios predicting a 2.7°C increase in average annual temperature by 2100 for the semi-arid 

western U.S. (Gonzalez et al., 2018) the impacts on water supply from warming are likely to 

continue. Revealing how temperature interacted with droughts over past centuries to millennia 
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using tree-ring based climate reconstructions could improve our understanding of how 

temperatures may influence drought severity in a warmer future. 

 

Despite the potential influence of temperature on past droughts, there is a deficit in annual tree-

ring based temperature reconstructions for the region. A recent survey of Common Era proxy 

records found only ten temperature-sensitive tree-ring chronologies in the states of Arizona, 

Colorado, New Mexico, and Utah (Emile-Geay et al., 2017). Efforts to produce a comprehensive 

regional temperature reconstruction in the semi-arid western U.S. have been limited due to a lack 

of temperature-sensitive tree-ring chronologies, and most recently, a lack of updated 

chronologies. Fritts and Lough (1985) produced the first tree-ring based temperature 

reconstruction for this region, expanding on previous work that produced a relative index of past 

temperature variation (Blasing and Fritts, 1976; LaMarche Jr and Stockton, 1974). Briffa et al. 

(1992) developed the first regional latewood density reconstruction of temperature for a gridded 

network that included the semi-arid western U.S. In the years since, several spatially limited 

temperature reconstructions have been produced for the Sierra Nevada (Graumlich, 1993), the 

southern Colorado Plateau (Salzer and Kipfmueller, 2005), the Great Basin (Salzer et al., 2009), 

and the Southern Rocky Mountains (Berkelhammer and Stott, 2012). Relative to the number of 

regionally developed precipitation and moisture reconstructions, temperature reconstructions are 

far outnumbered. With a limited set of temperature reconstructions available, a comparison 

between past droughts and temperature remains difficult. 
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Rocky Mountain bristlecone pine (Pinus aristata Engelm.) may provide an additional resource 

for this temperature reconstruction deficit. The related Great Basin bristlecone pine (Pinus 

longaeva D.K. Bailey) has been widely studied due to its 5000-year lifespan (Schulman, 1954), 

potential for climate reconstruction (Salzer et al., 2009), and preservation of remnant wood 

dating to the early Holocene (Salzer et al., 2019). While P. longaeva has been used for both 

annual precipitation (Knight et al., 2010) and temperature reconstructions (Salzer et al., 2009), 

research has indicated that inter-mixture of both precipitation and temperature signals is common 

within a P. longaeva sampling site due to topographic microclimates (Bunn et al., 2011) and 

proximity to upper tree line (Salzer et al., 2014b). Disentangling the mixed signals has involved 

cluster analysis (Tran et al., 2017), experimental temperature sensors (Bruening et al., 2017), and 

simulated tree-ring proxy growth models (Bunn et al., 2018).  

 

Despite its extreme longevity (over 2500 years (Brunstein and Yamaguchi, 1992)) and natural 

habitat within major Southwest headwaters (i.e., Rio Grande and Arkansas River), P. aristata has 

not received the same level of investigation for climate sensitivity as P. longaeva. Limited 

research exists for P. aristata (Brunstein and Yamaguchi, 1992; Ferguson and Graybill, 1983; 

Krebs, 1973; LaMarche Jr and Stockton, 1974), with only two precipitation proxy records 

(Routson et al., 2011; Woodhouse et al., 2011) and one temperature reconstruction (Salzer and 

Kipfmueller, 2005). Until now, no study has systematically examined the potential for P. aristata 

as a proxy for both temperature and moisture. A better understanding of the characteristics of P. 

aristata climate signals may improve this species’ potential as a multi-millennia climate record, 
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providing new regional temperature reconstructions and improving our understanding of past 

hydroclimates. 

 

We undertook an evaluation of P. aristata chronologies across the Southern Rocky Mountains of 

Colorado and New Mexico (Fig. A.1) to assess the variable response to climate between and 

within chronology sites. We used ten new and previously collected ring-width chronologies to 

answer the following questions: 

 

1. What do the regional set of chronologies tell us about the P. aristata response to climate, 

and how it varies by location and site characteristics? 

2. Within each sampling site, is the climate sensitivity consistent among trees that make up 

the site chronology or is there intra-site variability as documented in previous P. 

longaeva studies? 

3. What is the potential for developing long moisture and/or temperature reconstructions 

from this set of data? 

 

To isolate the dominant patterns of growth variability from the ring-width datasets, we used 

empirical orthogonal function (EOF, Preisendorfer and Mobley, 1988) analysis at both the 

chronology and the individual tree scales. We also used a modified form of hierarchical cluster 

analysis (Kipfmueller and Salzer, 2010) on a matrix of on-site correlations between the 

individual samples and the local climate to isolate a third set of tree growth patterns. Following 

the isolation of growth signals, we constructed time series and correlated them with a regional 
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gridded climate dataset to assess the relationship between P. aristata tree-ring growth patterns 

and climate. Finally, we evaluated the potential for these tree-ring growth data to be used in 

climate reconstructions. 

 

A.3 MATERIAL AND METHODS 

A.3.1 Study Area 

This investigation is set in the Southern Rocky Mountains (Southern Rockies) of the continental 

United States. The Southern Rockies ecoregion is characterized by multiple ranges of high, steep 

mountains with peaks regularly exceeding 4000 m surrounded by valleys dropping below 2500 

m (Wiken et al., 2011). This dramatic variation in topography controls all aspects of the regional 

climate, including temperature and precipitation. Temperature decreases with elevation, but local 

topography plays a role as well. Closed valleys surrounded by high peaks are susceptible to 

temperature inversions during the winter, with dense cold air sinking to the valley bottoms and 

reaching temperatures below -50°C (Doesken et al., 2003). These inversions also occur at 

smaller spatial scales and diurnally. Precipitation is broadly controlled by elevation with annual 

totals ranging from 255 mm at lower elevation sites to 1750 mm on high mountains (Wiken et 

al., 2011). In addition, the steep topography produces rain shadow effects throughout the 

Southern Rockies, resulting in sharp contrasts in precipitation due to orographic effects. The 

majority of annual precipitation falls as snow (Wiken et al., 2011), resulting in a snowpack 

reservoir that is the primary source of streamflow for the numerous rivers originating in the 

Southern Rockies. The depth of snowpack is controlled by elevation and aspect, with high north-

facing locations maintaining the deepest snow due to lower temperatures and reduced solar 
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radiation. The driest season in the study area is the spring interstitial period between the end of 

frontal storms in April and early May and beginning of summer thunderstorms in July. Except 

for this dry period, no other distinct wet or dry seasons occur.  

 

The natural distribution of Pinus aristata coincides with the southern half of the Southern 

Rockies ecoregion, extending from central and southern Colorado into northern New Mexico 

(Fig. A.1) (Bailey, 1970). There is an additional isolated stand of P. aristata on the San 

Francisco Peaks in northern Arizona. P. aristata is primarily found on the xeric, south-facing 

aspect of mountains between 2700 and 3700 m, in locations not occupied by Engelmann spruce, 

subalpine fir, or aspen (Baker, 1992; Schoettle and Coop, 2017). P. aristata habitat coincides 

with the headwaters of the Rio Grande, Arkansas, and South Platte Rivers, but is rarely found 

west of the North American continental divide or north of 40°N (Gilbert et al., 2019). P. aristata 

and P. longaeva have no range overlap, with the division largely demarcated by the Colorado 

River (Bailey, 1970). For this investigation we focused on the Colorado and New Mexico range 

of P. aristata (36.8°N-39.2°N, 105°W-106°W), excluding the isolated stand in Arizona. 

 

A.3.2 Data 

A.3.2.1    Tree-ring data 

Ten P. aristata collections were used in this study — five newly sampled, four previously 

developed, and one an update of a previous collection (Table A.1). The previously developed 

collections were selected from our inventory of all published and unpublished P. aristata ring-

width data. From this inventory we selected the collections with available ring-width 
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measurements, low incidence of dating errors (as determined by COFECHA)(Holmes, 1983), 

and end dates of 2000 or later to maximize the timespan for the climate response analysis. This 

narrowed down the previous set of collections to four sites: Black Mountain (BLK) (Brunstein 

and Yamaguchi, 1992; Miller, 2014; Woodhouse et al., 2011), Summitville (SMV) (Routson et 

al., 2011), Sheep Mountain (SHM) (Woodhouse et al., 2011), and Windy Peak (WPK) 

(Woodhouse unpublished). One new collection in this study, Hermit Lake (HER), was an update 

of a previously collected chronology (LaMarche Jr and Stockton, 1974). Ring-width data for the 

five previously collected sites (including original HER time series), were obtained from the 

International Tree-Ring Data Bank (ITRDB) and from the unpublished collection of one of the 

authors. The new P. aristata collection sites span the length of the Sangre de Cristo Mountains 

from central Colorado to northern New Mexico. The five new sample collections were: Antora 

Peak East (APE), Little Costilla Peak - High (LCH), Little Costilla Peak - Low (LCL), North of 

Heart Lake (NHL), and Zapata Trail Summit (ZTS) (Fig. A.1, Table A.1). These sites were 

identified using location data from previous genetic sampling research (Schoettle and Coop, 

2017), the Arizona - New Mexico Chapter of the SEINet botanical repository (Gilbert et al., 

2019), and examination of Google Earth images. The ten sites range in elevation from 2900 m at 

LCL to 3680 m at HER. The majority of sites (n = 7) were located on south-aspect slopes, with 

SHM and LCH found on east-aspect slopes, and LCL sampled on a valley floor. 

 

During the summers of 2018 and 2019, we collected P. aristata increment cores from the five 

new sites and one updated site (Table A.1). We selected the oldest trees for sampling based on a 

set of physical characteristics that indicate extreme age (strip-bark growth, reduced crown, 
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presence of dead pith spike) (Brunstein, 2006). At minimum, two cores were collected from each 

tree with an increment borer, taken at breast height (1.3m), with at least 15 trees sampled per 

site. At five of the six sites (APE, HER, LCH, NHL, and ZTS) trees were sampled at or near the 

upper tree line limit of growth, but with care to exclude trees with krumholtz morphology that 

could distort climate sensitivity and reduce cross-dating capacity. The cores were mounted and 

prepared in accordance with standard dendrochronological procedure (Stokes and Smiley, 1968), 

the cross-dated ring-widths were measured with a Velmex measuring stage to a precision of 

0.001mm, and the measurement data was stored using the Tellervo archiving software (Brewer, 

2014). The years assigned to each ring-width measurement were verified with the COFECHA 

software (Holmes, 1983). 

 

Because the new samples in this study were from living trees, we made an effort to select only 

living trees from the previous collections. In cases where the sample type was unclear, we relied 

on the sample code if it indicated a remnant or a living tree. All ring-width measurements from 

these screened collections were then stored in the Tellervo database. Total number of ring-width 

samples and number of trees sampled for the sets of collections, along with mean age and 

chronology length, are shown in Table A.1. 

 

A.3.2.2    Climate data 

PRISM monthly gridded climate data (Daly et al., 1994) were used for correlation analysis, 

taking advantage of the spatial extent and long period of record of the PRISM dataset. The 

algorithm for the gridded PRISM data includes adjustments for orographic effects on 
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temperature and precipitation, taking into account elevation, slope, and aspect to simulate 

topographically induced variability (Daly et al., 1994). PRISM monthly total precipitation, 

monthly average maximum temperature, and monthly average minimum temperature from the 

period 1895 to 2018 were downloaded at the 0.25° resolution from the KNMI Climate Explorer 

(Trouet and Van Oldenborgh, 2013). The PRISM data were cropped to an area extending from 

30°N to 46°N to 114°W to 98°W, centered on the study area, for use in correlation analysis (Fig. 

A.1, climate response region). 

 

A.3.3 Methods 

A.3.3.1    Tree-ring time series development 

Our goal was to investigate the potential for multiple signals both between and within collection 

sites, therefore we developed two separate tree-ring datasets. The first dataset (“CHRON”) was a 

set of chronologies from each of the 10 sites used to investigate growth patterns between 

sampling sites. The second dataset (“TREE”) was a collection of 88 individual tree-ring series 

used for analysis of common tree growth patterns between trees irrespective of the sampling 

location. Prior to developing the two datasets, we processed the data and removed juvenile 

growth. If multiple core samples were collected from the same tree, we averaged together the 

ring-width values to produce a single time series for each tree (n = 188) (Table A.1). To remove 

juvenile growth, we identified the maximum common interval between all ten sites (1826-2007). 

We removed any ring-width series with evident juvenile growth over this period, resulting in the 

removal of 10 ring-width series. We used the remaining 178 ring-width series to construct the 

CHRON and TREE datasets. 
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The ten chronologies in the CHRON dataset were developed as follows: We evaluated 

subsample signal strength (SSS) prior to chronology construction to identify the periods of time 

with a sufficient number of tree-ring width measurements to produce a strong common signal for 

each chronology (Buras, 2017). A cutoff value of 0.80 for SSS was used to determine which time 

periods to select from each chronology (Wigley et al., 1984). This produced a common interval 

between the ten chronologies of 1826-2007 (n = 182 years). The ring-width series for each site 

were truncated to match this period and standardized using the series mean. The standardized 

ring-width series were then combined into a chronology using the robust bi-weight mean in the R 

package dplR (Bunn, 2008; Cook et al., 1990). Mean-value standardization was used as it 

preserves potential low-frequency signals present in the measurements (Kipfmueller and Salzer, 

2010). More complex detrending methods were not used for two reasons. First, almost all series 

used represented the last two centuries of growth in very slow-growing, long-lived trees; the few 

samples with possible juvenile growth during the period of chronology construction were 

deleted, removing the need to account for the influence of age on ring-width. Second, P. aristata 

grows in open stands in remote, undisturbed locations and has never been commercially 

harvested; with little to no exogenous disturbance, any low-frequency variability is assumed to 

be related to climate, and of interest to this study. The consistently slow growth, lack of 

exponential growth curve and tree-level decadal variability that merit this detrending approach 

are illustrated in Figure A.S1 in the supplemental materials. 
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The TREE dataset was developed as follows: We started with the 178 individual trees used to 

construct the CHRON dataset. Next, we screened for the trees with continuous data over the 

same time period as the CHRON dataset (1826-2007). A total of 88 time series met these criteria 

and were selected for use in the TREE dataset. They were truncated to the common interval of 

1895-2007 and detrended by their mean-value to standardize the dataset prior to analysis. The 

number of trees per sampling site varied from three at HER to 16 at APE. 

 

A.3.3.2  Determining dominant modes of tree growth variability with EOF analysis 

EOF analysis was used to isolate the dominant patterns of variability in the CHRON and TREE 

time series datasets, and then to evaluate which sites or set of trees contributed to the primary 

patterns of variability. The R program “prcomp” ran EOF analysis using SVD (singular value 

decomposition). A covariance matrix of the tree-ring data was used in the EOF calculation 

because all tree-ring data were measured in equivalent units and the mean-value detrending 

applied to the time series reduced the potential for a single series with excess variance to 

dominate the EOF results (Overland and Preisendorfer, 1982). Running an EOF analysis 

decomposes the covariance matrix into eigenvectors and their corresponding eigenvalues. The 

eigenvectors (also called “loadings”) are orthogonal (uncorrelated) and can be multiplied with 

the original dataset to produce a set of time series (Anchukaitis and Tierney, 2013). Each of the 

time series (or “scores”) corresponds to a mode of variance, which, in this study, represents a 

particular pattern of tree growth over time. However, the forced orthogonality of the 

eigenvectors produces results that may not correspond with physical realities (Richman, 1986). 
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To improve the interpretability of the loadings, a rotation procedure was applied to the EOF 

modes. 

 

Before applying rotation to the original EOF modes, we determined the significant number of 

eigenvalues to retain using a modified N-rule calculation (Anchukaitis and Tierney, 2013; 

Preisendorfer and Mobley, 1988). This process utilizes a Monte Carlo approach, creating 10,000 

synthetic white noise (Gaussian) and red noise (lag-1 autocorrelation) datasets, applying EOF 

analysis to the synthetic data, then determining if the original EOF eigenvalues were greater in 

value than the 95th percentile of the synthetic data eigenvalues. If the original EOF eigenvalues 

are larger than the both the white and red noise data, they are retained. A varimax orthogonal 

rotation was then applied to the retained original EOF eigenvalues. This process produced the 

rotated EOF scores for the CHRON dataset, values we used in the climate response analysis. 

 

We ran a modified form of EOF analysis on the TREE dataset to counter the influence of an 

uneven sample size between collection sites (varying from three to 16 trees). First, we applied 

the EOF analysis to the individual tree growth series at each site (ten runs, one per site). The 

modified N-rule was used to determine the number of EOF modes from each collection site to 

retain (Table A.3). The retained EOF modes were converted into unrotated EOF scores. EOF 

analysis was applied a second time to the set of unrotated EOF scores producing a final set of 

EOF modes. A varimax orthogonal rotation was applied to the second set of EOF modes 

producing rotated EOF scores. This second set of TREE EOF scores was used in our climate 

response analysis. The two-step process reduced the influence of sample number by converting 
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the ring-width data into the dominant modes of growth at each site. Whereas the CHRON EOF 

process highlighted a single growth signal per site (i.e., chronology), the TREE EOF process 

allowed sites with multiple growth signals to have both growth patterns represented in the EOF 

analysis. 

 

A.3.3.3    Determining modes of variability based on tree growth response to climate 

We utilized a second process to identify unique modes of tree growth variability at the tree level 

based on methods used in a previous study of five needle pines (Kipfmueller and Salzer, 2010). 

Following their approach, we first investigated the correlation between local climate and each 

tree growth time series, then we grouped the trees based on the types of correlations to produce 

clusters with similar climate responses. We then combined the tree growth series in each cluster 

to produce a single tree-ring time series corresponding to the climate response of each tree 

cluster. This time series was used to evaluate the climate response in the same manner as the 

EOF scores. We refer to this as the “Tree-Climate Method”. 

 

In this approach, we took the same set of 178 tree-ring time series used to produce the CHRON 

and TREE datasets and selected all trees with a complete period of record from 1895 to 2007 (a 

total of 119 trees). We chose the 1895 start date to match the period of record for PRISM data. 

We truncated the remaining 119 series to the 1895 to 2007 period and detrended by their mean-

value as done with the CHRON and TREE datasets. Next, we extracted the PRISM monthly 

precipitation, minimum temperature, and maximum temperature values for the data pixel located 

over each chronology location. The monthly climate data were averaged into three-month 
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seasonal time series (previous-Fall, Winter, Spring, Summer, and Fall) in the same manner as 

Kipfmueller and Salzer (2010), but with additional previous-Spring and previous-Summer 

seasons. Each tree was correlated with the seasonal climate record at the sampling location and 

the resulting correlations were combined into a matrix of correlations. If a tree had no significant 

correlations with any climate parameter, it was dropped from the matrix, reducing the final 

number of trees used for the cluster analysis. The final Tree-Climate dataset used for cluster 

analysis consisted of 114 trees. We calculated the clusters from the matrix using hierarchical 

cluster analysis with Euclidean distance matrices and Ward’s method (Ward Jr, 1963). The 

stability of the clusters was determined with bootstrapped Jaccard indices calculated by the R 

function “clusterboot” (Hennig, 2007). The number of clusters to keep was determined 

iteratively until the average of all the Jaccard indices was highest. Once a stable number of 

clusters was determined, the tree-ring series within each cluster were combined using a biweight 

robust mean to produce a single time series (Cook et al., 1990). 

  

A.3.3.4    Tree growth/climate analysis 

We assessed the relationship between the tree growth time series (from both chronology-level 

and tree-level analyses) and the PRISM gridded climate data with Pearson correlation analysis 

(significance assessed at p < 0.05). Correlations were calculated for each climate parameter 

(precipitation, maximum temperature, minimum temperature) and tree growth time series, from 

the April of the previous year to the end of current year growing season in September (n = 18 

months). The correlations for months in the year prior to the growing season were evaluated 

because of the high lag-1 autocorrelation present in P. aristata (LaMarche Jr and Stockton, 
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1974), which may result in a growth response to climate variation in the years after the initial 

climate perturbation. All correlations were calculated for the time period 1895 to 2007 as this is 

the common time-period between the PRISM data and all CHRON EOF, TREE EOF, and Tree-

Climate time series. Because the sign of EOF eigenvectors is arbitrary, and to facilitate 

comparisons, we reversed the sign of one EOF time series prior to the correlation calculations. 

The score for this time series had a strong negative correlations with the Tree-Climate time 

series, which are representative of the original direction of the tree response to climate. 

Therefore, it was reversed to match the directionality of the Tree-Climate time series. 

 

Because of the large number of correlations being run between tree growth time series and the 

climate records, a high potential for spurious false positive correlations (type I errors) between 

the proxy record and climate data exists (Hu et al., 2017). To adjust for the high test multiplicity 

and concurrent increase in type 1 errors, the False Discover Rate (FDR) procedure was applied 

(Benjamini and Hochberg, 1995). We ran FDR using the “p.adjust” function in R with a q-value 

set to 0.05, the same as our p-value threshold. In addition to the corrections for high test 

multiplicity, adjustments were made to account for serial correlation (i.e., autocorrelation) (Hu et 

al., 2017). To correct for high serial correlation an adjustment equation as defined by Dawdy and 

Matalas (1964) was used to calculate effective degrees of freedom 𝜐𝑒𝑓𝑓 . This adjustment 

increases the corresponding p-value in proportion to the increase in autocorrelation, reducing the 

potential for a type I errors. The FDR and 𝜐𝑒𝑓𝑓  adjustments were applied to all calculations used 

in the climate response correlations, while only the 𝜐𝑒𝑓𝑓  adjustment was applied to the seasonal 

climate relationships used in the Tree-Climate Method. FDR was unsuited for the initial Tree-
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Climate Method step as the correlations were single instance (one tree-ring time series and one 

climate time series), therefore reducing the need to assess potential false positives. 

 

The climate response calculations were run a second time with the low-frequency variability 

removed prior to correlation. We applied a 30-year Butterworth high-pass filter to both the 

climate time series and the tree growth time series using the pass.filt function in the R package 

DplR (Bunn, 2008). Removing the low-frequency variability allows for comparison of the high-

frequency variances in the resulting time series. The loss in correlation strength following the 

application of a high-pass filter will highlight time series where the low-frequency variability 

was an important factor in correlation. Both the original and high-pass filtered correlation 

calculations were used to analyze the climate sensitivity of the tree growth time series. 

 

From the climate response calculations, we produced a regional correlation map (Fig. A.1, 

climate response region) for each combination of climate parameter, month, tree growth time 

series, and for both the original and high-pass filtered series. These maps provide a broad 

overview of climate response for each time series. Next, we extracted the correlation values from 

a smaller region located directly over the P. aristata sampling sites (36°N- 40°N by 108°W- 

104°W) (Fig. A.1, reduced climate response region). From this reduced region, we produced a 

jitter plot of all correlations for the CHRON and TREE EOF time series and the Tree-Climate 

time series. These plots show the correlation (for p < 0.05) of each tree growth time series with 

each monthly climate variable. They also show the variation in correlation strength whether the 
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data was filtered or not prior to correlation. This smaller subset was used to better represent the 

local climate. 

 

A.4 RESULTS 

A.4.1 Time series produced from tree growth patterns and tree growth climate signals 

The EOF analysis based on the ten chronologies resulted in two primary modes of variability 

(Table A.2). The first CHRON EOF (C-1), accounting for 52% of the total variance, is composed 

primarily of loadings from LCH, ZTS, NHL, APE, WPK, and HER. These six sites are all 

located at the upper tree line. The second CHRON EOF (C-2), accounting for 23% of the total 

variance, is characterized by the two lower elevation sites, BLK and LCL, and one upper 

elevation site, WPK. Two sites, SHM, and SMV, contribute to both EOF modes, with small 

positive loadings for each mode. 

 

The first step of the TREE EOF analysis, on tree-growth series within each of the 10 sites, 

yielded either one or two EOFs per site (Table A.3). Seven sites had only one dominant EOF 

mode of growth, and three sites, BLK, SHM, and SMV, had two significant EOF modes within 

the collection site. These EOFs, 13 in all, were then used in the second round of TREE EOF 

analysis. This yielded two statistically significant TREE EOF modes (T-1 and T-2) representing 

41% and 21% of the explained variance, respectively (Table A.4).  

 

The first TREE EOF mode (T-1) was characterized by very high loadings from eight EOF time 

series, including most of the higher elevation sites. The second TREE EOF mode (T-2) had high 
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loadings from five of the series, including the two lowest elevations sites and WPK. These 

loadings are similar to those in the CHRON EOF results, but the difference is found at the three 

sites with two EOF modes each which were split between T-1 and T-2. The weakness of the 

SHM and SMV CHRON loadings contrasts with the strong loadings of SHM-1 and SMV-1 into 

T-2 and SHM-2 and SMV-2 into T-1. This suggests that a single chronology at these sites 

inadvertently blends two contrasting growth signals producing a weaker overall growth signal. 

 

The third approach for examining tree growth patterns (Tree-Climate or TC) was based on 

cluster analysis of 114 trees from the ten sampling sites and their responses to local climate grid 

points. This analysis resulted in five groupings (TC-1, TC-2, TC-3, TC-4, and TC-5) with 

respective Jaccard indices of 0.73, 0.86, 0.48, 0.48, and 0.77. Because Jaccard indices below 0.6 

are unstable and do not indicate significant patterns (Hennig, 2007), we removed TC-3 and TC-4 

(and the 37 trees associated with them). TC-1 consisted of trees from nine of the ten sampling 

sites, particularly NHL, ZTS, and LCH. TC-2 was dominated by trees at BLK, while TC-5 was 

made up of trees from six of the ten sampling sites (Table A.5). BLK was the only site in which 

all samples fell into one cluster. 

 

The associations between the seven tree-growth series (two CHRON EOFs, two TREE EOFS, 

three Tree-Climate clusters) were examined for the common period, 1895-2007 (Fig. A.2). The 

EOF time series pairs (C-1/C-2 and T-1/T-2) had weak correlations with one another, a logical 

result as EOF modes should be orthogonal and uncorrelated. The residual correlations that do 

exist between EOF time series pairs are a result of the shortened period for correlation (1895-
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2007) relative to the full time period for the EOF analysis (1826-2007). There are broad 

similarities between the pairs of TREE EOFs and CHRON EOFs even though the TREE EOF is 

an effort to optimize the common signal by identifying within-site growth signals. For example, 

C-1 has a very high correlation with T-1 (0.88), while C-2 has a very high correlation with T-2 

(0.96), producing two groups of time series with similar variability. The strong correlation 

between the two EOF pairs increases the utility of having the Tree-Climate method as an 

alternate mode of tree growth analysis. The Tree-Climate time series TC-1 and TC-5 correlate 

strongly with the first group (C-1/T-1), while TC-2 correlates with the second group (C-2/T-2). 

However, these correlations are not as strong as the intra-EOF correlations. The TC time series 

were also all significantly correlated with one another, but TC-1 and TC-5 had the strongest 

correlation of 0.78. 

 

A.4.2 Climate Response 

Climate response results indicate two main types of tree growth/climate relationships consistent 

among the three sets of tree growth patterns analyses. The first relationship, found in all seven 

time series, shows a negative June maximum temperature response. Six of these seven series (all 

but T-1) also show a positive June precipitation response. The second, and less common, climate 

response relationship was a positive correlation with minimum temperature during August and 

September at three sites (C-1, T-1, and TC-1). In the following sections we will discuss the two 

climate response patterns in more detail, including the influence of the high-pass filter on these 

relationships and the associated spatial patterns.  
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A.4.2.1    June correlations 

Five of the seven time series show a significant correlation with both June precipitation and 

temperature (C-2, T-2, TC-1, TC-2, and TC-5) (Figs. A.3 and A.4) in the original and high-pass 

filtered series, suggesting a robust June drought stress response to warm, dry conditions in that 

month. One additional series (C-1) is correlated with June precipitation, but does not show any 

correlation with June maximum temperature prior to high-pass filtering, and one (T-1) is not 

correlated June precipitation or with June maximum temperature prior to high-pass filtering. The 

removal of low-frequency variability in the C-1 and T-1 time series exposes an underlying high-

frequency negative response to June temperature in these growth series (Figs 3 and 4).  

 

T-2 has the strongest single negative correlation with June maximum temperature (r = -0.62), and 

the strongest single positive correlation with June precipitation (r = 0.47) (Fig. A.5A and Fig. 

A.5C, respectively), with weaker but still significant correlations after the 30-yr high-pass 

filtering (Fig. A.5B and Fig. A.5D, respectively). The C-2 series prior to high-pass filtering also 

has very strong negative June maximum temperature and positive June precipitation correlations 

of r = -0.58 and r = 0.44 respectively. Several of the tree growth series show positive 

precipitation/negative maximum temperature responses with other months; however, none of 

these correlations are found consistently across all seven series. Negative maximum temperature 

correlations during the July of the previous year are the most prevalent of these, occurring with 

original correlations in three of the seven time series, and with six of the seven time series after 

the high pass filter is applied. 
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The spatial patterns of the June temperature correlations are similar for these seven tree growth 

series, especially after application of the high-pass filter (Fig. A.6). The highest correlations are 

all centered directly over the study region, weakening with radial distance from this region. Tree 

growth associations with June precipitation are somewhat more variable. All but T-1 show 

correlations with the high-pass filtered tree growth series that extend in a north-south pattern 

coinciding with the Rocky Mountains; however, the location of strongest precipitation 

correlation varies between the series (Fig. A.7). The strongest June precipitation correlation is 

centered over the study area in the C-2, T-2, and TC-2 series, while it is centered over the 

northern Rocky Mountains in C-1, TC-1, and TC-5. The position of highest correlation is more 

stable with the June maximum temperature correlations and shifts in spatial correlation do not 

occur to the same degree as the precipitation climate correlations.  

 

A.4.2.2    Minimum temperature correlations 

The second main tree growth/climate pattern is an association between tree growth and minimum 

temperatures. Three time series (C-1, T-1, and TC-1) feature significant positive correlations 

with minimum temperatures during the months of August and September, prior to application of 

the 30-yr high pass filter (Figs 3 and 4). Two of these also have weak June moisture stress 

signals. The application of the high-pass filter removes any significant minimum temperature 

correlations in all three series. This is evident in the correlation maps for August and September 

shown for T-1 (Fig. A.8). The original (un-filtered) T-1 has the strongest correlation with 

minimum temperature in August and September, with maximum r-values of 0.49 and 0.45 

respectively, but after application of the 30-year high-pass filter the correlation map shows no 
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significant correlations remain. The original series show a concurrent increase in both August 

minimum temperatures and tree-ring widths over the 20th century (Fig. A.5E). Once the high-

pass filter is applied (Fig. A.5F), the trend is removed, and the correlation drops to 0.22, with a 

significance level of p = 0.010 after FDR and 𝜐𝑒𝑓𝑓  adjustments are applied.  

 

A.5 DISCUSSION 

The analyses described here are the first undertaken to investigate the climate information in P. 

aristata tree growth across much of its range. The tree growth/climate patterns are complex, 

similar to the results found by Bunn et al. (2018) for Pinus longaeva in the Great Basin. As with 

P. longaeva, the results from our study indicate that different growth responses occur within a 

single site, and in certain cases these responses indicate differing climate responses. 

 

Our first research question asked whether common tree growth signals were found between the 

ten P. aristata chronologies, and if so, how those signals related to climate variability. The 

CHRON EOF analysis yielded two time series (C-1 and C-2), together accounting for 76% of the 

common variance among the ten chronologies. This result indicates two common tree growth 

signals, one for trees at higher elevations (C-1) and one for trees at lower elevations (C-2). The 

C-1 series primarily shows a positive association with late summer minimum temperature while 

C-2 displays a strong moisture stress signal (positive correlation with precipitation and negative 

with temperature) that is particularly strong for June. However, when stripped of low-frequency 

signals using the 30-yr high-pass filter, both modes share a June drought stress response. This 

indicates that while upper elevation trees are showing a positive low-frequency response to late 
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summer minimum temperatures, when examined on a more annual basis, they display a response 

to June drought conditions that is similar to the lower elevation P. aristata. Spatial patterns of 

correlations indicate some differences in the June drought stress signal, with the strongest June 

precipitation correlation centered over Wyoming for C-1 and over central Colorado, and more 

widespread for C-2 (Fig. A.7). The temperature patterns are more similar (Fig. A.6). 

 

Our second question asked whether multiple climate responses may exist among trees within a 

single P. aristata sampling site. This question addressed the issue of trees within the same 

chronology having different responses to climate due to microsite conditions. Two approaches 

were taken to investigate this potential problem. First, EOF analysis was performed on the 

individual tree-ring width series at each of the ten collection sites, followed by an EOF analysis 

on the modes produced for each site. Second, cluster analysis was performed on the pattern of 

tree growth/climate correlations for each tree.  

 

In the first case, an analysis of the two TREE EOF time series (T-1 and T-2) indicated a mix of 

growth signals within several of the P. aristata sampling sites. The BLK, SHM, and SMV 

sampling sites had two significant EOF modes after the first run of TREE EOF analysis (Table 

A.3). The two modes from each site fell into either T-1 or T-2 when the second EOF analysis 

was applied (Table A.4). BLK-1, SHM-1, and SMV-1 had high loadings in T-2 while BLK-2, 

SHM-2, and SMV-2 had high loadings in T-1. The growth patterns of the trees within these three 

sites are different enough to fall into two modes and remain separate in the subsequent EOF 

analysis. If growth pattern differences are primarily related to climate, we would expect the 
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correlations between climate and the two TREE time series to reflect the differences. This was 

the case, with T-1 containing a positive, late summer correlation with minimum temperature and 

T-2 showing a strong June drought stress signal. These results were very similar to C-1 and C-2, 

respectively, with the same loss of the minimum temperature correlation for T-1 after high-pass 

filtering and replacement with a negative association with June (and prior summer) maximum 

temperature. However, the separation of different signals at BLK, SHM, and SMV sites appears 

to have strengthened the signal of the T-2 time series producing higher correlations with June 

precipitation and maximum temperature than occurs in C-2. This may indicate the mixed signals 

present at the BLK, SHM, and SMV sites reduced the clarity of the growth signal of their 

respective chronologies and subsequently of the CHRON EOF time series.  

 

The Tree-Climate cluster analysis further suggests the potential for trees to have differing 

climate responses within the same sampling site. The three significant Tree-Climate clusters 

indicate three different tree growth responses may be present within a single sampling site. Two 

sites (SHM and ZTS) have trees in all three clusters, one site (BLK) has trees in a single cluster, 

and the remaining seven sites have trees in two of the clusters. The presence of multiple growth 

patterns again represents the presence of multiple climate responses. TC-1 contains a weak late 

summer positive minimum temperature signal similar to C-1 and T-1, while TC-2 and TC-5 

exhibited a June precipitation and maximum temperature correlation similar to C-2 and T-2. Like 

the previous time series, the application of the 30-yr high-pass filter removed the minimum 

temperature signal.  
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An examination of the Tree-Climate clusters suggests, that in all cases (BLK being the 

exception), trees within a site may contain differences in climate signal that could be related to 

microsite conditions. These microsite differences appear to exist at both low and high elevation 

sampling sites. An examination of the precise location of predominantly June drought-stressed 

trees compared to those with low-frequency positive summer temperature response may reveal 

differences in microsite characteristics. The differences in climate responses among the three 

Tree-Climate series are subtle after the low-pass filtering, but as with the TREE EOF results, 

some attention to the climate signal at the tree level may help refine the climate information. 

These results strongly suggest that legacy P. aristata collections should be used with care, as 

they may contain trees with a mix of climate signals. 

 

A.5.1 Physical Mechanisms for Climate Responses 

The predominant June precipitation/maximum temperature correlation with tree growth we 

observed makes sense considering the regional climatology, the timing of tree growth, and tree 

physiology. First it should be noted that June is the driest or second driest month at all of 

sampling sites. June falls between the period of active mid-latitude winter storms and the onset 

of mid-summer moisture in July (Sheppard et al., 2002). June precipitation is also inversely 

correlated with June maximum temperature across the study region (Daly et al., 1994). While 

there are no published studies of cambial phenology, or the timing of wood formation, for P. 

aristata, they do exist for P. longaeva (Ziaco et al., 2016). P. longaeva is the closest genetic 

relative of P. aristata (Montes et al., 2019), therefore they likely share similar physiological 

traits. Analysis of cambial phenology of high altitude (3300m) P. longaeva indicates xylogenesis 
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(or onset of xylem cell formation) begins in early June and is continuous until late August at 

which point the annual tree-ring width is completed (Ziaco et al., 2016). The onset of 

xylogenesis in P. longaeva is driven by an interaction between soil temperature and soil moisture 

content. Winter snowmelt provides the moisture for P. longaeva xylogenesis, but the 

requirement of sufficient cambial warming shifts the onset of tree growth to June when the soil 

moisture derived from the snowpack is most depleted (Ziaco et al., 2016). As P. aristata is also 

found in areas with low June precipitation, we propose that the onset of growth for P. aristata is 

also occurring during this same period of water stress. At our study sites, low precipitation and 

the corresponding high maximum temperatures in June could combine to increase water stress 

for P. aristata and delay the onset of xylogenesis, resulting in a narrower tree ring. Hughes and 

Graumlich (1996) also found a similar relationship between P. longaeva growth and current 

spring precipitation, further supporting an indication of shared tree physiology between P. 

aristata and P. longaeva. 

 

Unlike the June precipitation/maximum temperature correlation, the positive correlation with 

minimum temperature in C-1, T-1, and TC-1 is a low-frequency signal, not evident after the 

high-pass filter is applied. The correlation with minimum temperature in August and September 

overlaps with the period where xylogenesis is ending (Ziaco et al., 2016). Upper tree line is 

determined primarily by temperature controls on the process of xylogenesis, with a threshold 

growing season average temperature controlling the position of tree line (Körner, 2012). Trees at 

or near the tree line, such as our T-1 samples from APE, LCH, NHL, and ZTS, exist at the 

threshold for sufficient growing season temperatures, with any large deviation having potentially 
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out-sized effects on growth (Körner, 2012). Therefore, when the months of August and 

September have warmer than average minimum temperatures, this could provide the needed 

thermal energy for these trees to extend the period of cellular division and produce a wider tree-

ring. Our results show a steady increase in T-1 and C-1 ring-widths after the mid 1800s (Fig. 

A.5E), corresponding with a steady Northern Hemisphere increase in temperature seen in other 

tree-ring proxies (Wilson et al., 2016). The trend may also correspond with increases in annual 

minimum temperature observed across the semi-arid western U.S. (Sambuco et al., 2020; Tang 

and Arnone III, 2013), and the recent rapid increase in warm nights (summer minimum 

temperature) seen in New Mexico (Frankson et al., 2019). 

 

A.5.2 Potential for climate reconstruction 

Our final question asked what the potential is for developing long moisture and/or temperature 

reconstructions from this set of data. The P. aristata June moisture stress signal (positive 

precipitation/negative maximum temperature correlation) has the greatest potential for long-term 

reconstruction. Two flavors of signal exist across the seven sites. The first is robust, found at the 

low elevation sites (BLK, LCP) and those sites with multiple within-site growth patterns (SHM, 

SMV), and maintains its correlation with June climate after high-pass filtering. The time series 

plot of filtered June precipitation and tree growth suggests that some decadal-scale variability 

exists in the precipitation data that is reflected in the tree-ring series (Fig. A.5), and this should 

be considered in the reconstruction process. The second flavor is weaker, found at high elevation 

sites, and is revealed only after the dominant minimum temperature signal is removed using 

high-pass filtering. Both groups could be combined to produce a single regional June moisture 
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reconstruction; however, if the reconstruction were to include remnant samples with unknown 

climate correlations, caution would warrant the creation of a climate reconstruction using only 

the lower elevation sites where minimum temperature is not known to have a positive effect on 

growth.  

  

P. aristata also shows potential for temperature reconstruction, but further research and sampling 

are likely required before this can be done with confidence. One issue with these trees is the 

strong reduction in the positive correlation with minimum temperature for C-1 and T-1 following 

the application of the 30-yr high-pass filtering. This may indicate the minimum temperature 

correlations are mostly due to similarities in low-frequency, multi-year patterns in temperature, 

rather than year to year variability. A similar issue was encountered during the production of a 

temperature reconstruction using P. longaeva (Salzer et al., 2014a). In that case, a 20-year 

smoothing spline was used to enhance the low-frequency signals and improve the strength of the 

temperature correlation. A future P. aristata temperature reconstruction may also be improved 

using a similar smoothing calculation. Another issue hampering a temperature reconstruction is 

the question of whether remnant samples can be used with confidence to reproduce temperature. 

The sampling sites with temperature sensitive trees contained multiple climate response signals 

and the remnants at those sites may also contain a similar mix of climate signals. One 

prospective solution could be a demographic study of a sampling site with intensive sampling 

that accurately maps the distribution and cohorts of trees over multiple centuries. The shifting 

proximity of a remnant to upper tree line could potentially be used as a proxy for increased 

temperature sensitivity and allow incorporation into a temperature reconstruction. Another 
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approach could couple fine-scale temperature measurements across an elevational gradient at a 

sampling site with growth modeling to better understand the temperature thresholds that result in 

tree growth limited by temperature rather than moisture. Both of these approaches have been 

utilized with P. longaeva (Bruening et al., 2018, 2017; Tran et al., 2017) and could be applied to 

P. aristata. 

 

A.6 CONCLUSIONS 

Rocky Mountain bristlecone pine (P. aristata) has the potential to produce a skillful 

reconstruction of June moisture variability in the Southern Rocky Mountains, with a secondary 

potential to reconstruct a low-frequency component of late summer minimum temperatures 

contingent upon additional investigatory work. Mixed climate responses within single sampling 

sites necessitate the careful selection of individual trees for use in climate reconstructions when 

using the existing chronologies. The dominant P. aristata tree-ring growth signal in Colorado 

and New Mexico is a current year June precipitation and maximum temperature sensitivity, 

explained by a plausible physical mechanism. The extent of this climate response across multiple 

sampling sites makes it an ideal parameter for a climate reconstruction. There also exists a 

separate set of trees with a low-frequency long-term positive response to temperature 

simultaneously present in trees with a weak June drought stress response at higher frequency. 

These temperature sensitive trees also have a potential for climate reconstruction, albeit one 

requiring more intensive sampling and screening for temperature response.  
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There are few late-spring/early-summer tree-ring precipitation reconstructions for the western 

U.S. outside a P. longaeva reconstruction in California (Hughes and Graumlich, 1996) and a 

Douglas fir/Limber pine reconstruction in Wyoming (Gray et al., 2004). The majority of tree-

ring precipitation reconstructions are correlated with the winter prior to the current growing 

season. Gridded PDSI datasets such as the North American Drought Atlas (NADA) also largely 

reflect a cool season moisture signal (Cook et al., 2010). Streamflow in the semi-arid western 

U.S. peaks in late-spring/early-summer as the winter snowpack provides water through a 

typically dry period. Increases in late-spring/early-summer precipitation have been shown to 

extend the period of snowmelt runoff in high elevation river basins (Dudley et al., 2017). A P. 

aristata reconstruction could provide a record of years with a cool, wet June versus those years 

with a warm, dry June, adding to our pre-instrumental understanding of this relationship between 

winter and early summer moisture. 

 

The original impetus for this study was the need for more tree-ring based temperature 

reconstructions in the semi-arid Western U.S. While our results primarily point to a June drought 

signal, there does exist a weaker but still significant correlation with late summer minimum 

temperature. Future work is needed to overcome the limitations of this study, including the 

construction of chronologies with a higher number of constituent samples and a more informed 

approach to sampling for temperature. A next step in this work is the utilization of a process-

based modeling approach (Vaganov et al., 2006; Anchukaitis et al., 2020) to better select trees 

for temperature sensitivity. Research on P. aristata cambial physiology is also needed to 

understand the environmental factors (including temperature) controlling ring-width growth. 
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This could be accomplished through intensive cambial phenology (Ziaco et al., 2016). Work on 

tree proxies other than ring-width, such as cellular anatomy (Ziaco et al., 2016), latewood density 

(Briffa et al., 2001), or blue light intensity (Campbell et al., 2007) may also produce P. aristata 

time series with stronger temperature correlations. 

 

These results represent a first step in understanding the complexity of climate sensitivity in P. 

aristata. We assumed that a close genetic relationship between with P. longaeva and P. aristata 

would result in complexities that are similar to those found in P. longaeva, and our study 

confirmed this assumption. Any work utilizing existing P. aristata chronologies must recognize 

this complexity and take care in sample selection to screen for the climatic response under 

investigation. While our focus for this investigation was on the growth patterns of living P. 

aristata trees, we were fortunate to sample a large collection of remnant wood for future work at 

four sampling sites (APE, HER, NHL, and ZTS). These sites contained an abundant selection of 

downed trees, many over 2000 years in age. At APE and NHL, we constructed continuous 

chronologies dating back to 847 BCE and 778 BCE respectively. To the best of our knowledge, 

these represent the oldest and longest dendrochronologic collection of any tree species for both 

Colorado and New Mexico.  

 

Future efforts to clarify the connection between P. aristata tree growth and climate variability 

will provide the framework to develop multi-millennial tree-ring climate reconstructions from 

these ancient chronologies. This work could deepen our understanding of the controls on past 
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hydroclimate interactions, improving our understanding of how natural variability underlies and 

interacts with climate change. 
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A.9 TABLES 

 

Table A.1.  The 10 Pinus aristata tree-ring collections used in this study. Site names and the Site Code abbreviations used in 

the manuscript are listed below, along with the elevation and geographic coordinates for the sampling locations. Total samples 

collected (i.e., cores taken with increment corer) and the number of trees sampled at each location are also included. 

Site Name Site Code Elev. Longitude Latitude 
Samples 

Collected 

# of Trees 

Sampled 

Chronology 

Time Period  

(SSS > 0.80) 

Mean Tree 

Age 

New collections 

Antora Peak East APE 3600m -106.200 38.327 44 20 1513-2017 423 

Little Costilla Peak High LCH 3600m -105.223 36.823 54 21 1700-2017 249 

Little Costilla Peak Low LCL 2900m -105.243 36.784 40 19 1826-2017 193 

North of Heart Lake NHL 3550m -105.450 36.792 40 16 1313-2017 553 

Zapata Trail Summit ZTS 3600m -105.486 37.647 45 17 1726-2017 214 

Update of previous collection 

Hermit Lake HER 3680m -105.642 38.096 59 36 1394-2017 419 

Previous collections 

Black Mountain BLK 3350m -105.689 38.713 31 17 848-2012 901 

Sheep Mountain SHM 3475m -106.103 39.201 37 19 1495-2007 526 

Summitville SMV 3500m -106.632 37.438 13 12 1111-2009 718 

Windy Mountain (Peak) WPK 3650m -106.408 37.478 18 11 1136-2007 501 

Collection Totals  381 188   
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Table A.2.  The CHRON EOF loadings from each sampling site for EOF’s C-1 and C-2. 

Site Code 
C-1 

EOF Loadings 

C-2 

EOF Loadings 

APE 0.232 0.015 

BLK -0.022 0.248 

HER 0.208 0.012 

LCH 0.313 -0.021 

LCL -0.050 0.254 

NHL 0.238 0.061 

SHM 0.051 0.060 

SMV 0.082 0.153 

WPK 0.217 0.225 

ZTS 0.280 0.041 

Explained 

Variance 
52.44% 23.41% 

 

 

Table A.3.  The number of trees per sampling site used in first EOF analysis and the number of 

significant EOF modes retained per sampling site for use in Step 2 of the TREE EOF analysis. 

The explained variance for each site’s EOF mode is also included. 

Site Code # of Trees 
# of Significant 

EOF Modes  

Explained 

Variance  

EOF-1  

Explained 

Variance  

EOF-2 

APE 16 1 58.6% - 

BLK 14 2 58.14% 12.74% 

HER 3 1 55.70% - 

LCH 10 1 64.51% - 

LCL 4 1 69.66% - 

NHL 12 1 57.80% - 

SHM 8 2 40.55% 23.55% 

SMV 10 2 50.65% 14.59% 

WPK 5 1 66.72% - 

ZTS 6 1 53.26% - 

Total  88 13 
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Table A.4.  The loadings for TREE EOF time series T-1 and T-2, using the EOF Scores from 

TREE EOF Step 1 (see Table A.3). 

Step 1 TREE EOF 

Time Series 

T-1 

EOF Loadings 

T-2 

EOF Loadings 

APE 0.902 0.004 

BLK-1 0.014 0.862 

BLK-2 0.827 -0.142 

HER 0.384 0.220 

LCH 0.928 -0.100 

LCL -0.175 0.802 

NHL 0.841 0.269 

SHM-1 -0.110 0.735 

SHM-2 0.671 -0.094 

SMV-1 0.264 0.618 

SMV-2 0.689 -0.081 

WPK 0.573 0.540 

ZTS 0.844 0.233 

Explained Variance 41.27% 21.11% 

 

 

Table A.5.  The number of trees used in each Tree-Climate cluster shown by sampling site. The 

number of total trees per side does not match the number of trees used because TC-3 and TC-4 

were dropped from the analysis prior to correlation with climate. 

Site Code 
Total # of 

Trees 

# of Trees 

Used 
TC-1 TC-2 TC-5 

APE 16 8 3 5 0 

BLK 15 12 0 12 0 

HER 5 5 3 0 2 

LCH 14 11 7 0 4 

LCL 9 5 2 3 0 

NHL 15 12 9 0 3 

SHM 8 7 3 2 2 

SMV 10 3 2 1 0 

WPK 7 2 1 0 1 

ZTS 15 12 8 2 2 

Total Trees 114 77 38 25 14 
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A.10 FIGURES 

 

 

Figure A.1.  Locations of P. aristata sampling sites used in this study (Left Panel), within the 

estimated range of P. aristata (Rehfeldt et al., 2006) and the Southern Rockies Ecoregion 

(Wiken et al., 2011). Location three letter codes correspond to sampling site codes in Table A.1. 

Upper right panel: Regions used for climate/tree growth correlations. The climate response 

region (solid line) shows the area used to generate correlation field maps while the dashed line 

box represents a reduced response region used to calculate correlations between tree growth and 

climate at each PRISM grid pdoint within this box. Lower right panel: >500 year-old P. aristata 

near upper tree line at the Hermit Lake collection site with narrow strip bark growth and reduced 

crown canopy.  
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Figure A.2.  Correlation Matrix between all seven time series used in analysis. Pearson 

correlation with a threshold value of 0.05 for analysis. Each correlation is for the common period 

of all seven time series (1895-2007). 
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Figure A.3.  Climate responses for the CHRON EOF and TREE EOF tree growth time series. 

Correlation map results are compressed into jitter plots. Each cluster of points shows the range of 

Pearson correlations (p < 0.05) for each tree growth series and monthly precipitation and 

temperature, from April prior to the growth year to September of the growth year. Correlations 

for the original (no filter) series are shown in black and for the 30-yr high-pass series in orange.  
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Figure A.4.  Climate responses for the Tree-Climate tree growth time series. Correlation map 

results are compressed into jitter plots. Each cluster of points shows the range of Pearson 

correlations (p < 0.05) for each tree growth series and monthly precipitation and temperature, 

from April prior to the growth year to September of the growth year. Correlations for the original 

(no filter) series are shown in black and for the 30-yr high-pass series in orange. 
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Figure A.5.  Best fitting tree-growth and climate unfiltered time series (A, C, E) and the 

subsequent results after 30-yr high-pass filtering is applied (B, D, F) over the period 1895-2007. 

Climate data includes June precipitation (A, B), June maximum temperature (C, D), and August 

minimum temperature (E, F). Time series T-2 is used in subplots A, B, C and D, while time 

series T-1 is used in subplots E and F. All climate data (blue) and tree-growth data (red) is 

standardized to facilitate comparison. June maximum temperature data (C/D) is inverted due to 

the negative correlation between maximum temperature and tree growth. Correlation r-values 

and adjusted p-values for each subplot are included. 
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Figure A.6.  June 1-month maximum temperature field correlation maps for each of the seven tree-growth series. Each colored pixel 

represents a significant Pearson correlation (p < 0.05) between the June 1-month maximum temperature at that pixel and the tree-

growth series. These maps show the results when the 30-yr high-pass filter is applied to both the climate record and tree-growth time 

series prior to correlation. R-values are broken into intervals of 0.1 for clarity, with map contour lines delineating the boundary 

between each interval.
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Figure A.7.  June 1-month precipitation field correlation maps for each of the seven tree-growth series. Each colored pixel 

represents a significant Pearson correlation (p < 0.05) between the June 1-month precipitation at that pixel and the tree-growth 

series. These maps show the results when the 30-yr high-pass filter is applied to both the climate record and time series prior to 

correlation. R-values are broken into intervals of 0.1 for clarity, with map contour lines delineating the boundary between each 

interval.
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Figure A.8.  August (left) and September (right) 1-month temperature field correlation maps for 

T-1 original (no filter) and 30-yr high-pass filtered tree-growth series. Each colored pixel 

represents a significant Pearson correlation (p < 0.05). R-values are broken into intervals of 0.1 

for clarity, with map contour lines delineating the boundary between each interval. 
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A.11 SUPPLEMENTAL FIGURE 

 

 

 

Figure A.S1.  Supplemental Figure showing juvenile growth in ring width time-series. To 

demonstrate the outlier nature of the ten juvenile ring-width time series we removed from our 

analysis, we graphically compared the juvenile ring-width time series (A) with two additional 

sets of ring-width time series (B and C). Figure A.S1B (cont.) shows ten trees, one from each 

collection site, that are closest to the median length series for their respective collection site. 

Figure A.S1C shows the ten longest time series for the entire study (out of 188) with lengths 
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ranging from 1025 to 2189 years. All time series shown above are the raw ring widths which 

have not been detrended or modified in any way and are all presented at the same scale. The gray 

box represents the period of analysis (1826-2007) used in this study. Both the median length 

trees (B) and the oldest trees (C) clearly show the reduction in age-related influence on ring 

width prior to the period of our evaluation, especially compared to the juvenile trees (A). The 

oldest trees show a particularly stable pattern of growth over the last 500 years, with no 

exponential growth curve evident at all. 
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B.1 ABSTRACT 

Trees at the elevational or latitudinal limits of growth play a crucial role as high resolution 

proxies for past temperature variability. Rocky Mountain bristlecone pine (Pinus aristata 

Engelm.) is a long-lived species found at upper tree line, but efforts to utilize P. aristata tree 

rings have been hampered by mixed growth signals and weak correlations with climate. Past 

work with the related Great Basin bristlecone pine utilized proxy system modeling to simulate 

tree-ring growth and identify climate sensitivities. We used the Vaganov-Shashkin proxy system 

model to evaluate the dynamics driving growth limitation in P. aristata, simulating tree-ring 

development at two sites, one at the upper tree line and one near the lower elevation limit of the 

species. Sensitivity tests were performed at both locations to simulate past extremes in climate. 

We identified a late-spring/early summer moisture signal at the lower elevation site, which 

remained stable during sensitivity tests, indicating the strong potential of bristlecone pine at this 

location as a moisture-proxy in climate reconstructions. The simulated trees in the upper 

elevation site were found to have moisture sensitivity which varied in timing and strength 

depending on the mean temperature of the annual growing season. Sensitivity testing for the 

upper site identified a robust temperature response under cooler conditions, indicating a potential 

for temperature reconstruction at sites no longer limited by temperature or at locations where P. 

aristata grows under cooler conditions. Our findings show the utility of proxy system modeling 

as a tool to understand the relationship between tree-ring growth and climate variability in P. 

aristata both in the present and under simulated past conditions. 
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B.2 INTRODUCTION 

In the Western United States, trees at the elevational or latitudinal limits of growth have long 

been recognized as the best high resolution proxies for past temperature variability (e.g., 

LaMarche Jr and Stockton 1974, Jacoby and D’Arrigo 1989). Although the tree-ring widths of 

bristlecone pine (Pinus longaeva, Bailey 1970 and Pinus aristata, Engelm.) growing at upper 

tree line were previously used to produce temperature reconstructions (Salzer and Kipfmueller 

2005, Salzer et al 2014a), further reconstruction of temperature using these high elevation 

bristlecone pines is difficult, due to the co-occurrence of a moisture growth signal alongside the 

elevation-driven temperature sensitivity (Salzer et al 2014b, Bunn et al 2011). Recent research 

also suggests that subtle topographic variability at tree line impacts the temperature sensitivity of 

P. longaeva (Great Basin bristlecone pine). Only those bristlecone growing in the coldest 

microclimates, with seasonal mean temperatures below a critical threshold, maintain a 

temperature sensitivity evident in tree-ring growth variability (Tran et al 2017, Bunn et al 2018). 

Before developing additional bristlecone-based proxies of temperature, work is needed to 

disentangle the factors driving complex climate sensitivities in these species. 

 

We build on prior research with P. longaeva (Bunn et al 2011, Tran et al 2017, Bruening et al 

2017, Bunn et al 2018) and P. aristata (Salzer and Kipfmueller 2005, Routson et al 2011, 

Woodhouse et al 2011) to investigative the climate sensitivity of P. aristata (Rocky Mountain 

bristlecone pine) at a new site in New Mexico that was sampled not only at tree line, but also 

near the lowest latitudinal limits of the species range (Schoettle and Coop 2017). Because of the 

arid climate, we expect these P. aristata may be sensitive to moisture, but it may be possible that 
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the tree line ecotone environment is cool enough to limit growth or contain cooler microsites that 

limit growth. If this is the case, these trees have the potential to document temperature 

variability. This study seeks to determine whether these tree line P. aristata are limited by 

temperature today, and if not, whether they were limited in the past when temperatures were 

cooler. Our first objective was to understand the current dynamics of growth limitation related to 

climate in P. aristata, determining their utility as proxies for temperature or moisture variability. 

Our second objective was to evaluate changes in P. aristata climate sensitivity that potentially 

occurred during the cooler climates observed in independent paleoclimatic records, thereby 

determining the stability of their climate sensitivity over time. 

 

To meet the first objective, we used two new P. aristata tree-ring chronologies developed for 

this study and a new temperature dataset recorded at each chronology site to simulate tree growth 

using the Vaganov-Shaskin Model (VSM) (Vaganov et al 2006, 2011, Anchukaitis et al 2020). 

The model outputs from the VSM were used to identify how climate limits growth and they 

allowed us to estimate the timing and the type of climate sensitivity experienced by trees at the 

two sites, one at upper tree line and one near the lower elevation limit of the species range. To 

address the second objective, we ran a series of sensitivity tests using modified VSM climate 

inputs to determine if the tree response to climate during a cooler period in the past was different 

from the modern period response. These sensitivity tests, in which we varied both temperature 

and precipitation, provided a framework to evaluate the potential for how temperature may have 

limited P. aristata growth in the past. While conducted at a single study site with only two 

chronologies, the results of this investigation shed light on the climate sensitivities of bristlecone 
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pine in the Southern Rockies, and provide insights on how best to take advantage of the multi-

millennial length records from P. aristata to document climate variability over the Common Era 

(0-2000 CE). 

 

B.3 DATA AND METHODS 

B.3.1 Temperature Data Collection 

The VSM requires daily climate data (precipitation and temperature) for tree growth simulation. 

Because site-specific seasonal mean temperature largely controls the climate sensitivity of trees 

(Tran et al 2017, Bunn et al 2018), the study required locally accurate temperature records. This 

was accomplished by placing a temperature logger on each of the 35 sampled trees for one year 

(Fig. B.1A and B.1B). In order to then convert the single year of logger data into multi-year 

temperature records for the VSM, we calibrated mean monthly data from two additional loggers 

placed near the closest weather station (Shuree SNOTEL Fig. B.1A). From this procedure, we 

derived a set of monthly temperature adjustments between the weather station and the sampling 

sites, converting the long-term Shuree temperature data into a synthetic multi-year (1989-2016) 

temperature record for each sampling site (See Supplemental B.S1 for a detailed description of 

this process). 

 

B.3.2 Tree-Ring Collection and Processing 

The tree-ring sampling location, Little Costilla Peak in the southern Rocky Mountains 

(henceforth LCP, 36.8N, 105.2W, Fig. B.1A) supports an extensive spatial distribution of P. 

aristata, allowing exploration of growth limiting conditions along an elevational gradient. The 
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entire southern slope of LCP is characterized by a P. aristata-dominant forest, with aspen and 

Engelmann spruce interspersed among the bristlecone overstory indicating past disturbance. We 

selected two sub-sites for intensive sampling: Little Costilla Peak - High (LCH), at the upper 

limits of growth (3600 m.a.s.l), to assess the potential of tree line P. aristata as a proxy for past 

temperatures, and Little Costilla Peak - Low (LCL), a control site near the lower limit of growth 

(2900 m.a.s.l.), and less likely to be temperature limited. 

 

We used visual criteria (Brunstein 2006) to sample trees that appeared at least 100 years old, 

collecting two cores per tree (19 trees at LCH and 16 at LCL). The samples were prepared, 

cross-dated, and measured according to standard dendrochronological procedure (Stokes and 

Smiley 1968, Holmes 1983, Bunn 2008). Tree-ring core measurements were averaged by tree. 

We removed nine LCH series because the corresponding loggers were damaged or were buried 

by snow for over one month and we removed six LCL series due to juvenile growth. This 

reduced the total number of tree-ring series to 20, with ten trees per site. Because the VSM 

simulates tree-ring formation under ideal growing conditions, without age-related trends, we 

standardized each time series using a spline with a wavelength of 2/3 the series length (Cook and 

Peters 1981), removing low-frequency growth trends not likely to be replicated in the VSM. We 

used a biweight mean to develop two chronologies (LCH and LCL), each extending from 1909-

2016 (n = 97 yrs.). 
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B.3.3 Tree-Growth Modeling  

To investigate growth limitations on P. aristata, we began by calculating a set of seasonal 

precipitation correlations and seasonal temperature partial correlations for each chronology. The 

correlations and partial correlations provided an initial assessment of the P. aristata climate 

sensitivity and a cross-reference to aid evaluation of VSM outputs. We used a seasonal 

correlation analysis procedure (Seascorr, Meko et al 2011, Zang and Biondi 2015) at one, two, 

and three month intervals from the August of the previous year to the current September, 

comparing the LCH and LCL ring-width chronologies and monthly precipitation and 

temperature data from (1985-2016). Because Seascorr analysis requires at least 31 years of data 

for bootstrapping confidence intervals, climate data were extracted from the 4km resolution 

PRISM gridded climate product (Daly et al 1994), at the pixel most closely corresponding with 

the LCH site (36.82°N, 105.22°W) and the LCL site (36.79°N, 105.24°W).  

 

After assessing climate correlations, we ran the Vaganov-Shashkin Model (VSM), to simulate 

LCH and LCL tree-ring growth and interpret the climate relationships we found in the 

correlation calculations. The VSM simulates conifer tree-ring growth using stepwise linear 

functions of temperature, soil moisture, and light to estimate daily growth rates. Following the 

dendrochronological principle of limiting factors (Fritts 1976), the most limiting climatic factor 

controls overall growth rate, determining the number of cells produced and the width of the 

annual synthetic tree ring. The accuracy of the model is assessed by comparing the synthetic 

ring-width time series with the actual ring-width time series. The three VSM growth outputs 

provide an estimation of timing and type of the primary climate limitation on growth, and are as 

follows: the growth rate as limited by temperature, the growth rate as limited by available soil 
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moisture, and the overall growth rate as determined by the first two rates. Vaganov et al (2006, 

2011) and Evans et al (2006) contain a complete description of the model process, and 

Anchukaitis et al (2020) describes the MATLAB version of the VSM used in this study. 

 

The VSM simulation was run for LCL and LCH from 1989 to 2016, using the temperature time 

series for each chronology site and the PRISM 4km precipitation data used in the initial 

correlation analysis. Due to potential noise in the VSM output, caused by slight variation in the 

parameters used while tuning the model, we ran an ensemble of 101 VSM runs, using a 

preselected set of model parameters (one for each site), in a process described in Supporting 

Information B.S2. The simulation results (i.e., growth rates, transpiration rates, etc.) from the 

101 VSM runs were averaged to produce a set of mean growth and environmental outputs for 

LCH and for LCL. The 28-years of simulated growth at LCL and LCH were averaged together to 

better facilitate comparison between two sites. Two LCH analysis years, 2007 and 2011, were 

selected to compare simulated instances of high and low growth rates, respectively.  

 

B.3.4 VSM Sensitivity Testing using Reconstructed Paleoclimates 

After assessment of the modern climate limitations on P. aristata growth, we ran a series of 

sensitivity tests to address our second objective concerning the VSM growth response of P. 

aristata under the past cooler conditions. The southwestern United States has experienced an 

annual average temperature increase of 0.9°C between 1901 and 2016 (Vose et al 2017) and 

evidence suggests the recent warming is greater than any experienced in the last millennium. The 

cooler conditions in previous millennium, documented through tree-ring reconstructions (Salzer 
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and Kipfmueller 2005, Wilson et al 2016), increase the possibility that presently moisture limited 

trees could have been temperature limited prior to the 20th century. However, dendroclimatic 

reconstructions for the western U.S. also document the occurrence of “megadroughts” 

(Woodhouse and Overpeck 1998), defined as more severe than droughts experienced over the 

instrumental period. While cooler conditions could result in tree growth limited by temperatures, 

could severe drought outweigh this, causing growth to be limited by moisture? In order to 

investigate this, the sensitivity testing targeted a period with both cooler and drier conditions.  

 

To test the potential influence of cooler conditions on P. aristata climate sensitivity, we adjusted 

the modern (1989-2016) VSM precipitation and temperature data to reflect past climate 

conditions. We applied the adjustments to the temperature (simulating a cooler climate), to both 

temperature and precipitation simultaneously (simulating a cooler climate with a megadrought), 

and to precipitation alone (simulating megadrought with modern warmer temperatures). The 

climate adjustments for temperature and precipitation were for the period 1573-1600 and were 

derived from CCSM3 TraCE modeled data (Liu et al 2009) and North American Seasonal 

Precipitation Atlas (NASPA, Stahle et al 2020) tree-ring reconstruction data, respectively (See 

Supplemental B.S3 for full description of paleo-climate adjustments). This period was selected 

because it was estimated by the NASPA reconstruction to be the driest period and by the TraCE 

model to be the third coldest period at LCP during the last 600 years, allowing us to simulate 

both colder and drier conditions using the same time period. The interval of 28 years was chosen 

to match the length of the modern (1989-2016) period used in initial VSM testing. The adjusted 

climate datasets were then used to run three sets of VSM sensitivity test simulations at LCH and 
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LCL: PTMP (past temperatures with modern precipitation), PMPP (past temperatures with past 

precipitation), and MTPP (modern temperatures with past precipitation). Each simulation was 

run 101 times for LCH and LCL, using the ensemble parameter pairs from the modern VSM 

runs. 

 

B.4 RESULTS AND DISCUSSION 

B.4.1 Pinus aristata seasonal climate correlations 

Correlation analysis of ring-width chronologies at LCH and LCL produced two distinct 

responses to climate (Fig. B.2). The upper elevation LCH chronology had a mixed climate 

signal, with few monthly periods containing significant correlations. The strongest precipitation 

correlations (p < 0.01) were positive for late winter/early spring (Feb-Mar, Jan-Mar, and 

previous Nov-Apr) and the most consistent temperature partial correlation primarily reflected a 

strong negative correlation with prior summer temperatures (Fig. B.2A). In contrast, the lower 

elevation LCL ring-width chronology had a stronger precipitation signal, correlating positively 

with late spring/early summer precipitation, and weaker negative correlations with mid-summer 

temperatures (Fig. B.2B). The strongest LCL precipitation correlation was for May-June (2 

month), r = 0.70. This corresponds with results from Tintor and Woodhouse (2021) which found 

a strong June moisture signal at LCL and at other lower elevation P. aristata sites across the 

Southern Rockies. However, the negative temperature correlation during the same 

spring/summer months as seen in Tintor and Woodhouse (2021) is not evident in the partial 

temperature correlations calculated using the Seascorr process. There is a strong negative 

correlation between LCL temperature and precipitation data during May (r = -0.63) and June (r = 
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-0.53), indicating an inverse relationship that the partial correlation calculation likely removed. 

The LCL and LCH correlations do not indicate any statistically significant (p < 0.01) positive 

correlation with temperature. Based on these results, a strong late spring/early summer moisture 

at LCL signal is evident, in agreement with previous research, while it is less clear how climate 

may be limiting growth at LCH. 

 

B.4.2 Assessing Synthetic Bristlecone Growth  

The 1989-2016 VSM simulations produced synthetic ring-width time series that closely replicate 

the measured ring-width chronologies at LCH and LCL (Figs. B.S1 and B.S2). The average 

correlations for the 101 ensemble runs are r = 0.55 (SD = 0.022) for LCH and r = 0.66 (SD = 

0.024) for LCL, falling within the range of past P. longaeva VSM applications (Bruening et al 

2018, Anchukaitis et al 2020), indicating successful simulation of P. aristata growth processes. 

The average VSM simulated growth rates (Figs. B.3A and B.3C) and environmental parameters 

(Figs. B.3B and B.3D) for LCH and LCL show similarities and differences. At both sites, 

simulated tree growth (Gr, black line) begins in April and keeps pace with the temperature 

limitation on growth (GrT, red line). Simultaneously, the snowpack melts and decreases to zero 

(SNOW, dashed black line) while replenishing soil moisture (SM, blue line). As temperatures 

rise through late spring, the increasing tree transpiration rate (TRANSP, black line) in the model 

begins to dry the simulated soil (lower SM values), and the soil moisture limitation on growth 

(GrW, blue line) begins to impact the growth rate. Once a drying threshold is reached (the blue 

line drops below the red line in Figs. B.3A and B.3C), the growth rate is now moisture limited 

and begins to decline. In the case of LCH, the soil moisture limitation on growth intermittently 
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drops below the temperature limitation threshold several times throughout the season, indicating 

that growth may occasionally be limited by moisture. As temperatures begin to cool in late 

summer, the transpiration rate is reduced and the growth may return temporarily to temperature 

limitation, ultimately ceasing once a temperature threshold is reached. 

 

The LCH mean of ensemble values (Fig. B.3A, Table B.1) does not show moisture limitation 

until day 222 (Aug. 10th) and moisture limitation affects only 4% of the growing season days. In 

21 of the 101 ensemble runs, no moisture limitation is evident, and growth remains temperature 

limited. The mix of moisture-limited and temperature-limited ensemble runs may explain the 

weaker LCH climate relationships in the correlation analysis. The LCL mean of ensemble values 

(Fig. B.3C, Table B.1) shows a clear moisture response beginning on day 162 (June 11th) and 

continuing until day 264 (Sept. 21st), with the timing of initial moisture deficit corresponding 

with the correlation analysis early summer precipitation relationship. Modeled environmental 

variables in Figure B.3B and B.3D help explain the different P. aristata responses at LCH and 

LCL. Higher average transpiration at LCH (2.91 mm/day) versus LCL (1.89 mm/day) is offset 

by a deeper snowpack (306 mm for LCH vs. 95 mm for LCL), keeping LCH soil moisture 

elevated late into the growing season thus reducing soil moisture limitations. Snowpack at LCL 

has also melted out by day 120 (vs. 174 at LCH). This earlier peak in soil moisture combined 

with less snowpack drives a faster rate of soil moisture limitation at LCL, quickly pushing the 

modeled trees into moisture stress in spring.  

 



 110 

We selected two years from the LCH results to analyze annual variability within the 28-yr range 

of values, choosing a high-growth year (2007) and a low-growth year (2011) (Fig. B.4). There 

are large differences in the percentage of growing season under moisture limitation between the 

2007 and 2011 (12% for 2007 vs. 50% for 2011) (Fig. B.4A and C respectively, Table B.1). 

There is a deeper snowpack in 2007 (346 mm vs. 221 mm in 2011) (Figs 4B and 4D), with more 

growing season precipitation (323 mm vs. 187 mm in 2011), and lower average growing season 

temperatures (9.62 C) compared to 2011 (10.82 C) (Table B.1). The higher precipitation and 

cooler temperatures at LCH in 2007 allow soil moisture to remain elevated later in the summer 

producing conditions for temperature-limited P. aristata. The 2011 LCH results have a similar 

growth pattern to the LCL VSM results, with a majority of the growing season limited by soil 

moisture beginning in the early summer.  

 

This variability in climate response at LCH could explain the poor climate correlations. The trees 

at LCH are not insensitive to climate variability, but the response is unstable and depends on a 

multivariate, non-linear interaction of environmental conditions. The trees are at a threshold 

between climate responses, and the VSM model captures the climate sensitivity switches. Tran et 

al (2017) found the transition between type of climate sensitivity in P. longaeva was determined 

by a Seasonal Mean Temperature (SMT, Paulsen and Körner (2014)) threshold varying from 7.4 

to 8.0C. Above this temperature range trees were moisture sensitive and below they were 

temperature sensitive. The 28-year SMT calculated from the synthetic LCH temperatures is 7.66, 

near the middle of this threshold range and further evidence that the current upper tree line P. 

aristata exist in a liminal space between climate sensitivities. 
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B.4.3 16th Century Sensitivity Testing 

Using a temperature simulation (TraCE-21ka) and a precipitation reconstruction (NASPA) for a 

megadrought in the late 16th century (1573-1600), we adjusted the modern VSM climate 

parameters to run three sets of VSM sensitivity tests at the LCH and LCL sampling sites (Fig. 

B.5, Tables 2 and 3). The three tests evaluated 1) late 16th century temperatures with modern 

precipitation (PTMP), 2) late 16th century temperatures and precipitation (PTPP), and 3) modern 

temperatures with 16th century precipitation (MTPP). The monthly temperature adjustments 

using the CCSM3 TraCE simulation cooled the temperature records at LCH and LCL between 

0.55°C (June) and 1.53°C (November) (Table B.S1). The precipitation adjustment from NASPA 

reduced the modern cool season (DJFMA) precipitation to 71.2% of the modern totals, and the 

summer (MJJ) to 99.6% of the modern totals (Table B.S2), clearly indicating that this was a 

winter drought, with similar summer precipitation to the modern 1989-2016 study period 

(PTMP, PTPP, MTPP)  

 

Compared to the modern VSM runs, two of the LCH sensitivity tests with past climate 

parameters (Fig. B.5 PTMP-LCH and PTPP-LCH, Table B.2) produce unique results. When a 

late 16th century cooling adjustment is applied to the LCH model (Fig. B.5 PTMP-LCH), all 

moisture limitation disappears. The length of growing season drops 14 days to 101, near the 94-

day limit of growth that is estimated to produce tree lines (Paulsen and Körner 2014). The 

addition of moisture stress from a megadrought on top of the late 16th century cooling does not 

change the climate response at LCH and the simulated tree growth remains entirely temperature 
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limited (Fig. B.5 PTPP-LCH). This suggests the LCH P. aristata were very likely responding to 

temperature during those times; we also infer that any moisture limitation inference based on the 

current ring-width relationship with precipitation may not hold for periods prior to the 20th 

century warming. Adding a megadrought to modern temperature conditions (Fig. B.5 MTPP-

LCH) increases the period of moisture sensitivity to 12% of the growing season and moves the 

date of sensitivity up to late July. While not as dramatic as the annual variability in the 2011 

LCH results (Fig. B.4C, Table B.1), this increase in moisture sensitivity would suggest that a 

megadrought under current conditions would further increase the moisture sensitivity of the trees 

at only LCH. 

 

All three LCL sensitivity tests (Fig. B.5 PTMP-LCL, PTPP-LCL, and MTPP-LCL, and Table 

B.3) display a moisture limitation signature similar to that of the modern LCL run (Fig. B.3). The 

16th century temperature adjustments (PTMP and PTPP, Fig. B.5 PTMP-LCL and PTPP-LCL) 

delay the initial onset of growth, but soil moisture limitation still begins in June (Table B.3). 

These sensitivity tests suggest that the LCL trees remain moisture limited even under cooler and 

drier conditions, increasing our confidence that a persistent, stable, and strong moisture signal 

occurred at LCL in the past. 

 

B.5 CONCLUSION 

This study’s primary question was to determine if the tree-line P. aristata at LCP were limited 

by temperature and are therefore suitable as proxies for temperature reconstructions. The 

correlation analysis and VSM modeling clearly show that the upper elevation trees (LCH) are not 
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robustly temperature limited, while the lower elevation trees at LCL are consistently limited by 

moisture. The upper tree-line LCH trees switch between precipitation and temperature sensitivity 

depending on annual climate conditions, while the lower elevation LCL trees contain a consistent 

late-spring/early-summer moisture signal. VSM sensitivity testing resolved the second question 

of this study, whether the trees at upper tree-line were sensitive to temperature variability in the 

past. When the VSM simulated a cooler, 16th century climate the trees at LCH were clearly 

temperature limited and remained so even under extreme drought stress. Meanwhile, the same 

VSM sensitivity tests run at LCL indicated a stable, long-term moisture response under cooler 

climate regimes. 

 

The VSM simulation and the VSM sensitivity testing highlight two points for future work: first, 

the LCL dataset appears highly suitable for use as a moisture-proxy in climate reconstructions, 

and second, trees at LCH and other tree line P. aristata sites should be carefully evaluated before 

use in climate reconstruction. Not only do the LCH trees respond to temperature thresholds from 

year to year, but it is possible that growth at this site was largely limited by temperature in the 

past. This result, however, does not broadly eliminate all tree-line P. aristata collections from 

use in future temperature reconstructions, but suggests potential opportunities. The LCH study 

site is located near the southernmost extent of P. aristata and therefore is warmer and drier than 

other previously sampled P. aristata stands. Relative to the average annual climate conditions at 

P. aristata tree line sites from Tintor and Woodhouse (2021), LCH is 3.2°C warmer (3.8°C vs. 

0.6°C) and receives 243 mm less precipitation (632 mm vs. 875mm) (Daly et al 1994). A 

dendroclimatic collection sampled at a higher latitude, elevation, and/or in a cooler microclimate 
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may contain a temperature growth response, but researchers should take care to investigate 

potential mixed climate sensitivities before developing a reconstruction. 

 

Finally, this study provided a new explanation for the apparently weaker climate sensitivity of 

upper elevation tree-line P. aristata samples seen in other research (Tintor and Woodhouse 

2021). The annual VSM growth curves at LCH showed a high variability in type of climate 

response, switching between temperature and moisture sensitivity from year to year. These trees 

may not be insensitive to climate, but instead exist at a climatic threshold that results in a 

variable response to climate, resulting in a less clear relationship with monthly climate 

parameters. These results show the power of proxy system modeling to better understand the 

tree-ring/climate relationship, providing confirmation of the suitability of certain collections for 

use in climate reconstructions, while also helping researchers avoid using samples from locations 

where the trees may experience complex non-linear relationships with climate. 

 

B.6 ACKNOWLEDGEMENTS 

Funds for this study were provided by the U.S. National Science Foundation grant (Award No. 

1702271). We are grateful to Mark Losleben, Soumaya Belmecheri, and Matthew Meko for 

assistance collecting samples at Little Costilla Peak. We are also grateful to Trevor Birt, Lindsay 

Cutler, Jonathan King, and Kyler McNeely for their help in the installation and maintenance of 

the temperature loggers.   



 115 

B.7 WORKS CITED 

Anchukaitis K J, Evans M N, Hughes M K and Vaganov E A 2020 An interpreted language 

implementation of the Vaganov–Shashkin tree-ring proxy system model 

Dendrochronologia 60 125677 

Bruening J M, Bunn A G and Salzer M W 2018 A climate-driven tree line position model in the 

White Mountains of California over the past six millennia Journal of Biogeography 45 

1067–76 

Bruening J M, Tran T J, Bunn A G, Weiss S B and Salzer M W 2017 Fine-scale modeling of 

bristlecone pine treeline position in the Great Basin, USA Environmental Research 

Letters 12 014008 

Brunstein F C 2006 Growth-Form Characteristics of Ancient Rocky Mountain Bristlecone Pines 

(Pinus aristata), Colorado (U.S. Geological Survey) 

Bunn A G 2008 A dendrochronology program library in R (dplR) Dendrochronologia 26 115–24 

Bunn A G, Hughes M K and Salzer M W 2011 Topographically modified tree-ring chronologies 

as a potential means to improve paleoclimate inference Climatic Change 105 627–34 

Bunn A G, Salzer M W, Anchukaitis K J, Bruening J M and Hughes M K 2018 Spatiotemporal 

variability in the climate growth response of high elevation bristlecone pine in the White 

Mountains of California Geophysical Research Letters 45 13–312 

Cook E R and Peters K 1981 The smoothing spline: a new approach to standardizing forest 

interior tree-ring width series for dendroclimatic studies 

Daly C, Neilson R P and Phillips D L 1994 A statistical-topographic model for mapping 

climatological precipitation over mountainous terrain Journal of applied meteorology 33 

140–58 

Evans M, Reichert B K, Kaplan A, Anchukaitis K J, Vaganov E, Hughes M and Cane M 2006 A 

forward modeling approach to paleoclimatic interpretation of tree-ring data Journal of 

Geophysical Research: Biogeosciences 111 

Fritts H 1976 Tree rings and climate (Elsevier) 

Holden Z A, Klene A E, Keefe R F and Moisen G G 2013 Design and evaluation of an 

inexpensive radiation shield for monitoring surface air temperatures Agricultural and 

forest meteorology 180 281–6 

Holmes R L 1983 Computer-assisted quality control in tree-ring dating and measurement Tree-

Ring Bulletin 



 116 

Jacoby G C and D’Arrigo R 1989 Reconstructed Northern Hemisphere annual temperature since 

1671 based on high-latitude tree-ring data from North America Climatic Change 14 39–

59 

LaMarche Jr V C and Stockton C W 1974 Chronologies from temperature-sensitive bristlecone 

pines at upper treeline in Western United States Tree-Ring Bulletin 

Liu Z, Otto-Bliesner B L, He F, Brady E C, Tomas R, Clark P U, Carlson A E, Lynch-Stieglitz J, 

Curry W, Brook E, Erickson D, Jacob R, Kutzbach J and Cheng J 2009 Transient 

Simulation of Last Deglaciation with a New Mechanism for Bolling-Allerod Warming 

Science 325 310–4 

Meko D M, Touchan R and Anchukaitis K J 2011 Seascorr: A MATLAB program for 

identifying the seasonal climate signal in an annual tree-ring time series Computers & 

Geosciences 37 1234–41 

Paulsen J and Körner C 2014 A climate-based model to predict potential treeline position around 

the globe Alpine Botany 124 1–12 

Routson C C, Woodhouse C A and Overpeck J T 2011 Second century megadrought in the Rio 

Grande headwaters, Colorado: How unusual was medieval drought? Geophysical 

Research Letters 38 

Salzer M W, Bunn A G, Graham N E and Hughes M K 2014a Five millennia of 

paleotemperature from tree-rings in the Great Basin, USA Climate Dynamics 42 1517–26 

Salzer M W and Kipfmueller K F 2005 Reconstructed temperature and precipitation on a 

millennial timescale from tree-rings in the southern Colorado Plateau, USA Climatic 

Change 70 465–87 

Salzer M W, Larson E R, Bunn A G and Hughes M K 2014b Changing climate response in near-

treeline bristlecone pine with elevation and aspect Environmental Research Letters 9 

114007 

Schoettle A W and Coop J D 2017 Range-wide conservation of Pinus aristata: a genetic 

collection with ecological context for proactive management today and resources for 

tomorrow New forests 48 181–99 

Stahle D W, Cook E R, Burnette D J, Torbenson M C, Howard I M, Griffin D, Diaz J V, Cook B 

I, Williams A P, Watson E, and others 2020 Dynamics, variability, and change in 

seasonal precipitation reconstructions for North America Journal of Climate 33 3173–95 

Stokes M and Smiley T 1968 Introduction to tree-ring dating. University of Chicago (Chicago 

Press, IL) 



 117 

Tintor W L and Woodhouse C A 2021 The variable climate response of Rocky Mountain 

bristlecone pine (Pinus aristata Engelm.) Dendrochronologia 68 125846 

Tran T J, Bruening J M, Bunn A G, Salzer M W and Weiss S B 2017 Cluster analysis and 

topoclimate modeling to examine bristlecone pine tree-ring growth signals in the Great 

Basin, USA Environmental Research Letters 12 014007 

Vaganov E A, Anchukaitis K J and Evans M N 2011 How well understood are the processes that 

create dendroclimatic records? A mechanistic model of the climatic control on conifer 

tree-ring growth dynamics Dendroclimatology (Springer) pp 37–75 

Vaganov E A, Hughes M K and Shashkin A V 2006 Growth dynamics of conifer tree rings: 

images of past and future environments vol 183 (Springer Science & Business Media) 

Vose R S, Easterling D R, Kunkel K E, LeGrande A N and Wehner M F 2017 Ch. 6: 

Temperature Changes in the United States. Climate Science Special Report: Fourth 

National Climate Assessment, Volume I (U.S. Global Change Research Program) Online: 

https://science2017.globalchange.gov/chapter/6/ 

Wilson R, Anchukaitis K, Briffa K R, Büntgen U, Cook E, D’arrigo R, Davi N, Esper J, Frank 

D, Gunnarson B, and others 2016 Last millennium northern hemisphere summer 

temperatures from tree rings: Part I: The long term context Quaternary Science Reviews 

134 1–18 

Woodhouse C A and Overpeck J T 1998 2000 years of drought variability in the central United 

States Bulletin of the American Meteorological Society 79 2693–714 

Woodhouse C A, Pederson G T and Gray S T 2011 An 1800-yr record of decadal-scale 

hydroclimatic variability in the upper Arkansas River basin from bristlecone pine 

Quaternary Research 75 483–90 

Zang C and Biondi F 2015 treeclim: an R package for the numerical calibration of proxy-climate 

relationships Ecography 38 431–6 

  



 118 

B.8 TABLES 

 

Table B.1.  Summary output data for 1989-2016 VSM simulations at LCL and LCH. First and 

second columns display results for 28-yr average of LCL and LCH mean ensemble runs. Third 

and fourth columns display the same output data for the individual LCH years, 2007 and 2011, 

representing a high growth and a low growth year, respectively. 

 

  
LCL - 

Average  

LCH - 

Average 
LCH - 2007  LCH - 2011 

Date Growth Starts  116 (25-Apr) 157 (5-Jun) 152 (1-Jun) 168 (16-Jun) 

Date Growth Stops 288 (15-Oct) 271 (27-Sep) 277 (4-Oct) 276 (3-Oct) 

Growing Season Length 173 114 125 108 

Date Moisture becomes 

Growth Limiting 
162 (11-Jun) 222 (10-Aug) 226 (14-Aug) 182 (1-Jul) 

Growing Season % Days 

Moisture Limited 
60% 4% 12% 50% 

Growing Season Average 

Temp. (C) 
11.60 9.75 9.62 10.82 

Growing Season Total 

Precip. (mm) 
300 246 323 187 

Avg. Transpiration Rate 

(mm) 
1.89 2.91 3.18 2.88 

Max. Snowpack (mm) 95 306 346 221 

Date of Max Snowpack 61 (2-Mar) 111 (21-Apr) 117 (27-Apr) 105 (15-Apr) 
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Table B.2.  Comparison of LCH Modern VSM run to VSM sensitivity tests using TraCE 

temperature and NASPA precipitation data from the late 1500s megadrought. The first and 

second rows show which temperature and precipitation dataset were used for each run. 

 

LCH Modern 

PTMP  

(Past Temp. w/ 

Modern Precip.) 

PTPP 

(Past Temp. w/ 

Past Precip.) 

MTPP 

(Modern 

Temp. w/ Past 

Precip.) 

Temperature Data Synth. LCH  
TraCE adj. 

Synth. LCH  

TraCE adj. 

Synth. LCH 
Synth. LCH  

Precipitation Data PRISM PRISM 
NASPA adj. 

PRISM 

NASPA adj. 

PRISM 

Date Growth Starts  157 (5-Jun) 165 (13-Jun) 165 (13-Jun) 157 (5-Jun) 

Date Growth Stops 271 (27-Sep) 266 (22-Sep) 266 (22-Sep) 271 (27-Sep) 

Growing Season Length 114 101 101 114 

Date Moisture becomes 

Growth Limiting 
224 (12-Aug) NA NA 201 (20-Jul) 

Growing Season % 

Days Moisture Limited 
4% NA NA  12% 

Avg. Transpiration 

Rate (mm) 
2.91 2.71 2.59 2.74 

Max. Snowpack (mm) 306 352 267 230 

Date of Max Snowpack 111 (21-Apr) 124 (4-May) 124 (4-May) 105 (15-Apr) 
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Table B.3.  Comparison of LCL Modern VSM run to VSM sensitivity tests using TraCE 

temperature and NASPA precipitation data from the late 1500s megadrought. The first and 

second rows show which temperature and precipitation dataset were used for each run. 

 

LCL Modern 

PTMP  

(Past Temp. w/ 

Modern Precip.) 

PTPP 

(Past Temp. w/ 

Past Precip.) 

MTPP 

(Modern 

Temp. w/ Past 

Precip.) 

Temperature Data Synth. LCL  
TraCE adj. 

Synth. LCL 

TraCE adj. 

Synth. LCL 
Synth. LCL 

Precipitation Data PRISM PRISM 
NASPA adj. 

PRISM 

NASPA adj. 

PRISM 

Date Growth Starts  116 (25-Apr) 128 (8-May) 128 (8-May) 116 (26-Apr) 

Date Growth Stops 288 (15-Oct) 283 (10-Oct) 283 (10-Oct) 289 (15-Oct) 

Growing Season Length 173 155 155 172 

Date Moisture becomes 

Growth Limiting 
162 (11-Jun) 170 (19-Jun) 168 (17-Jun) 161 (10-Jun) 

Growing Season % 

Days Moisture Limited 
60% 58% 59% 60% 

Avg. Transpiration 

Rate (mm) 
1.89 1.92 1.82 1.80 

Max. Snowpack (mm) 95 135 98 66 

Date of Max Snowpack 61 (2-Mar) 72 (13-Mar) 72 (13-Mar) 68 (9-Mar) 
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B.9 FIGURES 

 

 
 

Figure B.1.  Map of study area for this investigation. 

 A) A detailed map of the Little Costilla Peak ridgeline with the locations of the LCH (blue) and 

LCH (orange) sampling sites and iButton sensor placements highlighted. Shown in green are the 

iButton sensor sites located on trees adjacent to the Shuree SNOTEL (USDA Natural Resources 

Conservation Service SNOTEL S1169). Elevation contours in meters. B) A closeup of the 

temperature shield based on a modified design from Holden et al (2013) used to house the 

iButton sensors during our analysis. C) Overview map of the Little Costilla Peak location within 

the Continental United States.  
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Figure B.2.  Seascorr seasonal correlations and partial correlations for A) LCH and B) LCL 

chronologies with PRISM gridded precipitation and temperature data at the chronology 

locations. The upper row of each graph (blue bars) shows the correlation between the chronology 

and monthly precipitation. The lower row of each graph (red bars) shows the partial correlations 

between the chronologies and monthly temperature, with the precipitation correlation removed. 

Climate correlations are shown for 1, 2, and 3 month long seasonal averages, with the month on 

the graphic indicating the last month of the particular season. Light blue and red bars in A and B 

indicate correlations with significance values (p) below 0.05, while dark blue and red bars 

indicated correlations with significance values (p) below 0.01.  
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Figure B.3.  LCH (A & B) and LCL (C & D) average ensemble growth rates and average 

environmental variables for 1989-2016 VSM runs. A and C: Light gray lines represent the 28-

year average overall P. aristata VSM growth rate for each of the 101 ensemble members and 

dark gray lines indicate the ensemble mean of growth (Gr). Light blue lines represent the growth 

rate as limited by soil moisture averaged over 28-years for each ensemble member, and the dark 

blue line is the ensemble mean of soil-moisture limited growth (GrW). The red line is the same 

across all ensemble members and represents the temperature limitations on growth (GrT). It is 

unaffected by the selection of ensemble input parameters. When the dark blue line dips below the 

red line in A and C, the model has shifted from temperature limitations on growth to soil-

moisture limitations on growth. 28-year environmental parameter averages are shown in B and 

D. They are responsible for controlling the growth rate in A and C. The dark blue line in B and D 

represents average soil moisture (SM) as a unitless ratio of total soil moisture capacity. The solid 

black line is the average of ensemble plant transpiration rates by day of year (TRANSP), and is 

measured in mm. The dashed black line is the depth of snowpack (SNOW) by day of year and 

has been adjusted by dividing the value (in mm) by 50 to improve legibility of the graphic.  
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Figure B.4.  VSM ensemble average values for LCH in 2007 (A & B), a high-growth year, and 

LCH in 2011 (C & D), a low-growth year. A and C: The black line represents the mean P. 

aristata VSM growth rate (Gr) for the 101 ensemble members in 2007 (A) and 2011 (C). The 

blue line represents the mean soil-moisture limited growth rate (GrW) for the 101 ensemble 

members. The red line represents the temperature limitations on growth (GrT) and is the same 

across all ensemble members. The intermittent nature of the Gr (black line) and GrW (blue line) 

in 2011 (C) is due to an abrupt stop-start of growth in the VSM. Environmental parameter values 

for 2007 and 2011 are shown in B and D, respectively. They are responsible for controlling the 

growth rate in A and C. The dark blue line in B and D represents average soil moisture (SM) as a 

unitless ratio of total soil moisture capacity. The solid black line is the average of ensemble plant 

transpiration rates by day of year (TRANSP), and is measured in mm. The dashed black line is 

the depth of snowpack (SNOW) by day of year and has been adjusted by dividing the value (in 

mm) by 50 to improve legibility of the graphic. The transpiration rate in 2011 is intermittent due 

to the abrupt stop-start growth in the VSM that also impacts the growth parameters.  
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Figure B.5.  Ensemble growth rate graphs for PTMP, PTPP, and MTPP sensitivity tests at LCH 

(A, C, and E) and LCL (B, D, and F). Each row represents a sensitivity test: PTMP (A & B) 

(past temperatures with modern precipitation, simulating cooling alone), PTPP (C & D) (past 

temperatures with past precipitation, simulating megadrought and cooling together), and MTPP 

(E & F) (modern temperatures with past precipitation, simulating megadrought. As in Figure 

B.3, light gray lines represent the 28-year average overall P. aristata VSM growth rate for each 

of the 101 ensemble members and dark gray lines indicate the ensemble mean of growth (Gr). 

Light blue lines represent the growth rate as limited by soil moisture averaged over 28-years for 

each ensemble member, and the dark blue line is the ensemble mean of soil-moisture limited 

growth (GrW). The red line is the same across all ensemble members and represents the 

temperature limitations on growth (GrT). It is unaffected by the selection of ensemble input 

parameters. When the dark blue line dips below the red line the model has shifted from 

temperature limitations on growth to soil-moisture limitations on growth.   
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B.10 SUPPLEMENTAL INFORMATION 

B.10.S1 iButton Data Procedure 

The iButtons (Maxim Integrated, San Jose CA model DS1922L-F5) collected bi-hourly 

temperature data for a full year, from October 2018 through October 2019 (n = 4380 

observations). They were placed at 37 locations (19 at LCH, 16 at LCL, 2 at Shuree SNOTEL).  

Sensors were housed in hand-made radiation shielding based on a modified Holden et al (2013) 

design (Fig. 1B). During this interval, two LCH radiation shields were destroyed and seven LCH 

sensors were buried under snow at for at least one month during the growing season, reducing 

the total number of usable sensors to 26. We used a snow burial procedure developed in 

Sambuco et al (2020) to remove temperature data if the daily temperatures remain below 0°C 

and the diurnal temperature range is less than 5°C. 

 

Prior to producing the synthetic temperature datasets for LCH and LCL, we first addressed the 

known issue of ad-hoc temperature shielding producing biased temperature measurements 

(Terando et al 2017) by comparing bi-hourly data at the Shuree SNOTEL USDA NRCS S1169 

(SHU) to the bi-hourly data collected at the two iButtons (Sensor J and Sensor L, or J/L) we 

placed in trees nearby. Because of a lapse in SHU data over a period of the comparison time, we 

utilized homogenized temperature records from two nearby SNOTEL sites (North Costilla 

(NCO) and Red River Pass #2 (RRP)) (Oyler et al 2015) to fill missing data at SHU. We 

constructed a linear regression with NCO and RRP data to fill the missing SHU SNOTEL data, 

and the resulting synthetic SHU data had a spearman correlation with the original SHU data of r 

= 0.9864. We also ran a Wilcoxon paired rank sum test between the synthetic SHU and the 
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original SHU data, and the result passed, indicating the datasets do not have significant 

differences. 

 

There was also an additional 4 month lapse in data at the J/L sensors located next to the SHU, 

and this data was filled using an hourly linear regression (one regression for each bi-hour period, 

12 total) constructed from another nearby iButton sensor (Sensor 17). The correlation between 

J/L and 17 was very high (r = 0.9926) and passed the Wilcoxon paired rank sum test. We then 

compared the daily average temperature of the synthetic J/L data with the daily average 

temperature of the synthetic SHU data. We ran our comparison by month and the differences 

between the two datasets resulted in a set of monthly adjustments for the J/L data. These 

adjustments remove the bias caused by the temperature shielding. We applied these adjustments 

to the 26 LCH and LCL iButton sensors.  

 

Next, we compared each of the 26 daily averages from the additional iButtons to the daily 

averages from J/L. We used the monthly differences between the J/L sensors and all of the other 

sensors later when constructing long-term temperature records. Because the synthetic J/L data 

after temperature shield correction is essentially the same value as the synthetic SHU data, we 

could assume that the 28 year record we produced for SHU (1989-2016) would match a 28-year 

record produced at the J/L trees. If we applied the monthly differences between the J/L sensors 

and the remaining 26 iButton sensors, then we could convert the 28-year record of temperature at 

SHU into a 28-year record at each of the sampled trees. After we applied this conversion, we 

were left with 26 28-year temperature records at each tree. We removed 6 sensors from the LCL 
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calculation due to the juvenile growth detected in the ring-width time series, reducing the total 

number of LCL series to 10. We then averaged together the 10 LCL and 10 LCH 28-year records 

to produce a single temperature time series for each site. These synthetic LCL and LCH daily 

average temperature time series were the datasets we then used in the VSM model. 

 

B.10.S2 VSM Tuning Procedure 

Tuning the VSM model parameters to produce an accurate synthetic ring-width time series was 

accomplished by iteratively running sensitivity tests on 24 parameters and determined that jointly 

varying the soil drainage rate (rated) and a transpiration coefficient (k3) best replicated real P. 

aristata ring-width variability. To select the best pairing of these parameters for the LCH and 

LCL simulations, we used a modified form of the Latin Hypercube sampling design (Stein 1987) 

to generate 10050 parameter pairs of ‘rated’ and ‘k3’ values drawn respectively from fixed 

intervals of 0.001 to 0.005 and 0.15 to 0.35, respectively. Using every parameter pair from the 

Latin Hypercube, we ran 10050 28-year simulations (1989-2016, or modern run) for both LCH 

and LCL. Because of the potential for noise in the VSM due to slight variances in parameters 

producing non-linear edge effects, we chose not to select a single best simulation (i.e., highest 

correlation between actual and synthetic ring-width time series), but instead opted to select the 

top 1% of simulations (n = 101 runs) and produce an ensemble of those values. The simulation 

results (i.e., growth rates, transpiration rates, etc.) from these top 1% of parameter pairs were 

averaged to produce a single mean of outputs for LCH and for LCL, allowing simplified internal 

analysis and intercomparison between sites. 
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B.10.S3 Paleo-climate Adjustment Procedure 

To determine the temperature adjustment for the sensitivity testing we used the CCSM3 TraCE 

paleotemperature simulations for the pixel located over LCP (Liu et al 2009) smoothed with a 

30-yr spline. The TraCE simulation produced monthly output, but only until 1990, thus 

preventing us from calculating a temperature anomaly relative to the modern VSM baseline. 

Recognizing this limitation, we used the last 40 years of the simulation (1950-1990) as a baseline 

and converted absolute temperatures to anomalies. The resulting anomaly record at LCP for the 

last millennium showed all periods prior to the instrumental record were at least 0.47°C cooler 

than the modern baseline. Given consistent cooler temperatures, we chose to select temperature 

data from the same period as the precipitation adjustment (1573-1600, see below) as it allowed a 

complete simulation of the late 16th century megadrought. Coincidently, the late 16th century was 

the third coldest period over the last millennium at LCP in the TraCE simulation. We extracted 

the monthly anomalies for 1587 (the midpoint of 1573-1600) (Table B.S1). The resulting 1587 

anomalies were used to adjust the modern synthetic LCH and LCL temperatures by month, 

allowing the VSM to simulate the 16th century temperatures. We chose not to utilize the TraCE 

precipitation reconstructions because of model difficulty replicating the North American 

monsoon (He 2011), representing 25% of annual precipitation at LCP (Daly et al 1994).  

 

For the precipitation adjustment to simulate a megadrought we utilized the North American 

Seasonal Precipitation Atlas (NASPA, Stahle et al 2020), a 600-year gridded reconstruction of 

cool-season (December to April, DJFMA) and warm-season (May to July, MJJ) precipitation. 

We extracted reconstructed precipitation data from the nine 0.5° pixels located closest to LCP 
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(36°N-37.5°N,104.5°W-106°W), averaged the nine time series by year, and applied a running 

28-year average to the annual data (matching the 28-yr 1989-2016 modern run). We found 1573-

1600 to be the driest 28-year period between 1400 and 2016, matching previous research 

identifying this period as most severe Western U.S. megadrought of the last millennium (Stahle 

et al 2000, Williams et al 2020). We also extracted the NASPA 28-yr precipitation average from 

the same time as the modern 1989-2016 VSM run. Comparing the modern period with the late 

16th century megadrought, we evaluated the difference in the 28-yr means of DFJMA and MJJ 

precipitation and applied these monthly proportional reductions to the 1989-2016 PRISM 

precipitation data from the modern VSM run (Table B.S2). No August to November 

precipitation reconstruction exists over the same period, so we conservatively kept those PRISM 

precipitation months unadjusted.  
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B.10.S4 Supplemental Tables 

 

Table B.S1.  TraCE-21ka 30-yr spline difference in temperature between 1950-1990 average and 

1587. These numbers are used to shift LCH and LCL temperatures by month replicating 

temperatures at time of late 1500s megadrought. 

 

Month 1587 Temperature Shift 

Jan -1.004 

Feb -1.492 

Mar -1.425 

Apr -1.003 

May -1.342 

Jun -0.558 

Jul -0.804 

Aug -0.803 

Sep -0.676 

Oct -1.082 

Nov -1.530 

Dec -0.652 

Annual Average -1.031 

 

Table B.S2.  North American Seasonal Precipitation Average differences between 1573-1600 

and 1989-2016 DJFMA and MJJ 28-yr averages. The proportional reduction applied to data prior 

to VSM model runs is included. 

 

 DJFMA MJJ 

1573-1600 NASPA 
77.60 mm 134.22 mm 

Precip. Avg. 

1989-2016 NASPA 
108.97 mm 134.82 mm 

Precip. Avg. 

Difference -31.37 mm -0.59 mm 

Proportion Reduction 0.712 0.996 
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B.10.S5 Supplemental Figures 

 

 

 

Figure B.S1.  Full results for top 1% of LCH ensemble runs. Upper graph shows synthetic time 

series of each ensemble member with the highest correlating member highlighted. Lower left 

graph shows the parameter values for the top 1% ensemble (101 parameter pairs). Blue dot 

highlights parameter pair producing the highest correlation between synthetic time series and 

measured time series. Lower right graph shows average ensemble growth rates averaged over 28 

years. 
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Figure B.S2.  Full results of top 1% of LCL ensemble runs. Upper graph shows synthetic time 

series of each ensemble member with the highest correlating member highlighted. Lower left 

graph shows the parameter values for the top 1% ensemble (101 parameter pairs). Blue dot 

highlights parameter pair producing the highest correlation between synthetic time series and 

measured time series. Lower right graph shows average ensemble growth rates averaged over 28 

years.  
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C.1 ABSTRACT 

The majority of upper Rio Grande spring and summer streamflow originates as snow, allowing 

the prediction of streamflow volumes using systematized snowpack measurements. Recent 

declines in snowpack prediction power suggests other factors, including spring hydroclimate 

(temperature and precipitation), may increasingly determining streamflow volumes. In a stressed, 

over-apportioned Rio Grande, understanding the past impact of spring hydroclimate conditions 

on streamflow is necessary to prepare for future changes. We evaluated the observed relationship 

between snowpack, spring hydroclimate conditions, and streamflow volumes in the Rio Grande 

headwaters, identifying years when extreme spring conditions coincide with streamflow volumes 

outside those predicted by the winter snowpack. We also produced a new 1560-year April-June 

spring hydroclimate tree-ring reconstruction for the Rio Grande headwaters, which we compared 

with a previously produced snowpack reconstruction (Pederson et al., 2011) to assess the pre-

instrumental snowpack-spring hydroclimate relationship. We found it was rare (16% of years) in 

the observed data for extreme spring hydroclimate conditions to alter streamflow volumes (both 

positively and negatively). The reconstructed snowpack-spring hydroclimate annual relationship 

was similar to the observed annual relationship, suggesting a similarly low probability of 

extreme spring conditions altering streamflow in the past. Comparison of multidecadal 

fluctuations in the reconstructed snowpack and spring hydroclimate datasets indicated a weak, 

unstable relationship, interrupted by intervals of coherent, simultaneous shifts, often during 

extreme droughts or pluvials. With increasing temperatures expected to decrease snowpack 

contribution to Rio Grande streamflow, the occurrence of cool, wet springs to supplement 

deficits will become increasingly important. Unfortunately, both the observed and reconstructed 
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datasets suggest that the occurrence of such cool, wet springs is rare and should not be expected 

to regularly supplement Rio Grande streamflow. 

 

C.2 INTRODUCTION 

The Rio Grande (Río Bravo del Norte, in Spanish) is the fifth-longest river in North America, 

running 3,060 km and draining 517,000 km2. It originates as snowpack in the mountains of 

Colorado, passing through or draining three U.S. states and five Mexican states before emptying 

into the Gulf of Mexico (USGS, 2021b). It is a major source for municipal and agricultural water 

supply while also acting as a natural boundary between the Mexico and the United States (Blythe 

& Schmidt, 2018; Udall, 2020). As a result of extensive development and overuse, portions of 

the Rio Grande between New Mexico and Texas now cease flowing for several months a year 

(Blythe & Schmidt, 2018; Udall, 2020). Management of the limited, remaining water resources 

in the upper Rio Grande region (Colorado, New Mexico, and Texas) operates within the rules of 

the Rio Grande Compact, an inter-state agreement to apportion streamflow between the three 

states. The compact rules are driven by streamflow measurements at several locations along the 

Rio Grande and its tributaries (Paddock, 2001). One of these locations, the Del Norte gage along 

the Rio Grande, measures the single greatest source of water for the upper Rio Grande and is 

therefore a key metric used in the administration of the Rio Grande Compact (Paddock, 2001). 

For this reason, when the USDA-NRCS (U.S. Department of Agriculture Natural Resources 

Conservation Service) publishes the water supply forecast (WSF) on April 1st of each year, water 

managers throughout the upper Rio Grande incorporate this forecast into their annual planning 

(Vandiver, 1999). 
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The Rio Grande WSFs issued by the NRCS are based both on measurements of SWE (snow 

water equivalent, or the amount of water stored in the snowpack), and antecedent precipitation 

measured in the watershed above the Del Norte measurement gage. The high correlation between 

SWE measurements on April 1st and the ensuing streamflow volumes has historically allowed for 

statistically significant prediction skill (Garen, 1992; Pagano et al., 2009) although declines in 

prediction skill for WSFs have been observed since the 1980s (Pagano et al., 2004). Efforts to 

incorporate temperature forecasts into WSFs (Lehner et al., 2017) or utilize ensembles of 

machine-learning based WSFs (Fleming et al., 2021) have improved the skill of WSF, but 

snowpack measurements remain a central feature of the streamflow prediction process. On April 

7, 2021, the NRCS WSF for the Del Norte gage estimated that streamflow would only reach 71% 

of average (NRCS-NWCC, 2021).With the prediction of below-average runoff, combined with 

ongoing inter-state compact deficits, severe shortages for users on the Rio Grande were expected 

(Davis, 2021a). In response, water managers delayed the start of irrigation throughout central 

New Mexico (Davis, 2021a) and warned the public that the Rio Grande through Albuquerque, 

New Mexico could go dry for the first time in 30 years (Davis, 2021b). Despite predictions of 

severe deficits, by the end of June 2021 total streamflow through the Del Norte gage was above 

the forecasted volume (Colorado DWR, 2021), while well-timed precipitation, combined with 

creative water management (Davis, 2021c), prevented the Rio Grande through Albuquerque 

from completely drying. Anecdotally, the 2021 reprieve on the Rio Grande was explained by a 

strong North American Monsoon (NAM, Adams & Comrie, 1997) supplying sufficient 

precipitation to keep streamflow elevated and the river continuous (Davis, 2021d; Fleck, 2021). 
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While significant summer precipitation events from the NAM can increase streamflow on the 

Rio Grande, the streamflow on the Rio Grande was higher than predicted in June of 2021, before 

the onset of the NAM. A comparison between the spring hydroclimate conditions in 2021 and 

those during the same period in 2020 may provide a better explanation for the reprieve seen on 

the Rio Grande. 

 

In 2020, the NRCS April 1st WSF predicted the Rio Grande at Del Norte gage would see 69% of 

average streamflow volume, similar to the 2021 prediction (NRCS-NWCC, 2020, 2021). 

However, the 2021 April to June streamflow volume at Del Norte was 18% greater than the same 

period in 2020 (378 M m3 vs. 319 M m3)(Colorado DWR, 2021). What drove the difference 

between streamflow volumes when the flow predictions for both years were so similar? One 

potential explanation may lie with the difference in spring hydroclimate (i.e., precipitation plus 

the effects of temperature) in the two years. April to June precipitation totals for the headwaters 

of the Rio Grande showed a 264% increase in spring precipitation from 2020 to 2021 (37 mm 

and 97 mm, respectively) (Menne et al., 2018). All three months saw more precipitation in 2021 

than 2020, with the largest increase occurring in May 2021, with precipitation over four times 

greater than May 2020 (50 mm vs. 12 mm, respectively). Spring temperatures were similarly 

divergent, with April and May cooler in 2021 than in 2020, and the three month temperature 

average dropping from 9.9 °C in 2020 to 9.4 °C in 2021. Again, May 2021 stands out, with daily 

average temperatures more than a full degree C cooler than May 2020 (10.6 °C and 9 °C, 

respectively)(Menne et al., 2018). The combination of cooler and wetter conditions in 2021 
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(relative to 2020), is likely to explain the disparate spring streamflow volumes in spite of similar 

April 1 WSFs. 

 

The period following the April 1st WSF, but prior to the July start of the NAM, represents a 

gradient in the headwaters of the Rio Grande, with the cool season moisture in April 

transitioning to warm and dry pre-monsoon conditions in June. The October to March period, 

during which snowpack accumulates, contributes 45% of total annual precipitation, while the 

NAM period from July to August contributes another 34% of total annual precipitation. From 

April to June, the region experiences relatively dry conditions, with total precipitation only 

contributing to 21% of the annual total. The likelihood of precipitation also decreases over this 

period, with monthly totals dropping from 38 mm in April to 20 mm in June, gradually reducing 

the potential for additional precipitation to contribute to streamflow. Hypothetically, an 

unusually cool, wet spring could make a perceptible contribution to Rio Grande streamflow. 

With climate change predicted to impact the Rio Grande through decreased snowpack volumes 

and a corresponding reduction in streamflow (Elias et al., 2015; Hurd & Coonrod, 2012; 

Llewellyn & Vaddey, 2013), climate conditions from April to June (between peak snowpack and 

the start of the NAM) may increasingly impact Rio Grande streamflow volumes (Chavarria & 

Gutzler, 2018). A better understanding of the relationship between winter snowpack and spring 

hydroclimate conditions, and the associated impact on streamflow is needed. How often in the 

observed record has a warm, dry winter followed by a cool, wet spring occurred at the same time 

streamflow was higher than expected given the winter snowpack? Does the inverse of this occur, 

with a wet winter and a warm, dry spring coinciding with lower than anticipated streamflow? 
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Could an analysis of paleoclimate reconstructions of snowpack and spring hydroclimate, based 

on tree-ring measurements, provide a more complete context to evaluate this relationship and 

how it has evolved over time? 

 

To answer these questions, this study focuses on the Rio Grande Headwaters (RGHW), the 

northernmost sub-basin of the Rio Grande, the location of the Del Norte gage, and a region 

responsible for more than 50% of the total streamflow in the upper Rio Grande. The primary 

objectives of this study are as follows: (1) Evaluate the relationship between snowpack, spring 

hydroclimate conditions, and streamflow volumes of the Rio Grande using instrumental data, 

identifying years when spring hydroclimate conditions coincide with spring streamflow volumes 

that are outside anticipated streamflows based on preceding winter snowpack. (2) Assess the pre-

instrumental period relationship between snowpack and spring conditions over the past 15 

centuries in order to situate the observed relationship between snowpack and spring hydroclimate 

conditions within a broader historic context. The pre-instrumental relationship was examined 

using a previously produced, tree-ring reconstruction of SWE (Pederson et al., 2011), and a 

newly developed tree-ring reconstruction of spring hydroclimate conditions in the RGHW. The 

new spring hydroclimate reconstruction utilized the tree-ring widths of Rocky Mountain 

bristlecone pine (Pinus aristata, Englem.), recently identified as a species sensitive to moisture 

and temperature variability during the period from late-spring to early-summer (Tintor & 

Woodhouse, 2021). 
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C.3 BACKGROUND AND DATA 

C.3.1 The Rio Grande Headwaters 

This study centers on the RGHW (USGS HUC 130100), the northern-most sub-basin of the 

upper Rio Grande (Fig. C.1, inset). The RGHW covers 19,715 km2 in southern Colorado and 

Northern New Mexico. It contributes 50% of annual streamflow for the upper Rio Grande, 

despite comprising only 17% of the total upper Rio Grande watershed (Blythe & Schmidt, 2018; 

USGS, 2021b). It is a high elevation watershed ranging from 4,374 m at Blanca Peak to 2,255 m 

along the Rio Grande at the Colorado/New Mexico border. The RGHW is bounded by the San 

Juan Mountains to the west and the Sangre de Cristo Mountains to the east, with the arid San 

Luis Valley between the two ranges (Fig. C.1). The average annual precipitation for the RGHW 

(as approximated by Colorado Climate Division 5, Fig. C.1) is 430 mm/yr. (1991-2020), Menne 

et al., 2018). June is the driest month with 20 mm/mo., while August is the wettest with 56 

mm/mo. (Fig. C.2A). The average temperatures for the RGHW range from -6.5 °C in January to 

16.0 °C in July (Fig. C.2A). The climate division average values of precipitation and temperature 

mask wide variability within the RGHW that results from elevation and topography. For 

example, the lower elevation town of Alamosa (2,300 m) in the San Luis Valley receives 185 

mm/yr. of precipitation, while the higher elevation Wolf Creek Summit (3,350 m) in the San 

Juan Mountains receives 1,270 mm/yr. (Menne et al., 2018). During the summer, average July 

temperatures are 18.1 °C for Alamosa and 11.8 °C for Wolf Creek Summit, with temperature 

generally decreasing as elevation increases. In the winter, cold-air inversions in the San Luis 

Valley result in average January temperatures of -8.7 °C in Alamosa, below the -8.2 °C average 

at Wolf Creek Summit (Menne et al., 2018). 
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C.3.2 Snowpack, Spring Hydroclimate, and Spring Streamflow Observed Data 

Observed SWE, spring hydroclimate, and spring streamflow datasets for the RGHW were used 

to address the first objective of this study (Table C.1), using the common interval of 1937-2004. 

In addition to the three primary datasets, Colorado Climate Division 5 monthly total precipitation 

and average temperatures (covering 1902-2004) were also used for further analysis of the results 

(Menne et al., 2018). 

 

The SWE dataset used in this study was the standardized index of April 1 SWE developed by 

Pederson et al. (2011) and originally produced as part of a multi-century evaluation of SWE 

variability throughout the Rocky Mountains (Table C.1A). Although individual April 1 SWE 

measurements exist back to 1937 for the RGHW, the number and location of the snow course 

sites has varied over time, making the construction of a single long-term observed record 

difficult. Pederson et al. (2011) solved this by converting each available SWE record in the basin 

to a standard score, then averaging the available standard scores by year to develop a single 

annual SWE value for the RGHW (along with many other watersheds). 

 

The SPEI (Standardized Precipitation-Evapotranspiration Index, Vicente-Serrano et al., 2010) 

was selected to represent spring hydroclimate conditions in the RGHW as it incorporated both 

precipitation and temperature into the index calculation (Table C.1A). As demonstrated in the 

opening example, both spring precipitation and temperature likely play a role in influencing 

streamflow volumes outside those predicted by prior winter snowpack. The SPEI drought index 
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incorporates both climatic conditions in its formulation, starting with the total precipitation and 

subtracting the influence of temperature on available moisture through a calculation of potential 

evapotranspiration (FAO-56 Penman–Monteith equation (Allen et al., 1998)). The SPEI value 

can be calculated for periods of variable length (1-month to 48-months) and for this study the 

SPEI 3-month dataset was used. April to June 3-month SPEI values were extracted from eight 

0.5° x 0.5° pixels corresponding with the area of the RGHW (Fig. C.1, Trouet & Van 

Oldenborgh, 2013; Vicente-Serrano et al., 2010). The eight time-series were averaged together 

for the years 1937-2004 to produce a single spring SPEI dataset for the RGHW (Table C.1A). 

 

The Del Norte gage (USGS gage 8220000) was chosen to represent April to June Rio Grande 

streamflow totals in this study (Table C.1B). The Del Norte gage was chosen due to its long 

period of record, relative lack of upstream modification, and sizeable representation of total 

streamflow in the RGHW. Established along the Rio Grande in 1890 and relocated to the current 

location in 1908, the Del Norte gage has a continuous monthly record over the common interval 

(1937-2004). Four reservoirs (totaling 156 M m3 of storage) and six minor trans-basin diversions 

lie upstream from the Del Norte gage (USGS, 2021a). Monthly naturalized Del Norte 

streamflows from 1957 to 2020 account for the upstream reservoir storage and diversions 

(USGS, 2021a) and have a high correlation with the original, unadjusted monthly Del Norte 

streamflow volumes during the same period (r = 0.99), in agreement with previous assessments 

of the minimal impact of human management on Del Norte streamflows (Chavarria & Gutzler, 

2018). From 1937-2004 the Del Norte gage averaged 750 M m3 of streamflow a year with 453 M 

m3 of streamflow during the April-June period (60% of annual streamflow). May and June were 
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the months with the highest runoff (Fig. C.2B), reflecting the contribution from snowpack 

melting. The Del Norte gage represented 83% of total annual streamflows in the RGHW, 

therefore this record is a good representation of total RGHW headwaters streamflow (Blythe and 

Schmidt 2018). 

 

Because the SWE and spring SPEI datasets were standardized indices and the RGHW spring 

streamflow measurement was in absolute, the indices of SWE and spring SPEI and the 

streamflow measurements were converted to percentile values in order to facilitate the 

comparison between these different hydroclimatic metrics. The percentile ranks ranged from 1st 

to 99th percentile, with the 50th percentile indicating the median value for each time series. 

 

C.3.3 Reconstructed Snowpack and Spring Hydroclimate Conditions 

To answer the second objective and assess the pre-instrumental relationship between snowpack 

and spring hydroclimate conditions in the RGHW, tree-ring based reconstructions of SWE and 

spring SPEI were used. For SWE, the Pederson et al. (2011) 1600-year reconstruction of April 1 

SWE variability in the RGHW was used. The SWE reconstruction (Table C.1B) was composed 

of four nested reconstructions developed from eight tree-ring chronologies. The four regression 

models used to develop the SWE index were shown to skillfully reproduce SWE variability 

during the instrumental period (1937-2004) with R2
adj values dropping from 0.58 to 0.29 as 

reconstruction length increased (Pederson et al., 2011). The SWE reconstruction was shortened 

to 445-2004 CE to match the coverage period of the spring SPEI reconstruction developed for 

this study. 
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Previous research by Tintor & Woodhouse (2021) indicated a late spring/early-summer moisture 

signal was reflected in the annual ring-width measurements of P. aristata. The moisture signal 

was represented by the co-occurrence of a strong positive correlation with precipitation and an 

even stronger negative correlation with maximum temperatures. Because the SPEI drought index 

incorporates both precipitation and temperature, it corresponds with the spring hydroclimate 

stress signal contained tree-ring widths of P. aristata. Initial Pearson correlations between the 

observed 3-month April-June SPEI values and P. aristata chronologies confirm this (r = 0.62), 

showing a higher correlation than that seen between P. aristata and RGHW spring precipitation 

(r = 0.55) or P. aristata and spring temperature (r = -0.54). This relationship between P. aristata 

and observed spring SPEI was utilized to produce a multi-century reconstruction of spring SPEI. 

 

The reconstruction of the spring SPEI is discussed in full detail in the Supplemental information 

(Text C.S1, Tables C.S1 and C.S2, Figures C.S1 and C.S2). What follows is a brief overview of 

the key reconstruction steps. P. aristata chronologies identified by Tintor & Woodhouse (2021) 

as having a significant correlation (p < 0.05) with the observed spring SPEI were selected (five 

in total, Fig. C.1). The P. aristata chronologies were pre-whitened to remove autocorrelation 

because they contained significant first-order autocorrelation which the observed spring SPEI 

time series lacked (AR1= 0.36, p < 0.05 and AR1 = -0.17, p = 0.96, respectively). Since the P. 

aristata pre-whitened (or residual) chronologies varied by length, successively longer, but 

increasingly less skillful multiple linear regression models were developed. These models were 

then nested backwards to produce a single spring SPEI reconstruction. The individual models 
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were cross-validated using Leave-One-Out and k-folds methodology (Wong, 2015). The skill 

(R2
adj) of the reconstruction models ranged from 0.45 to 0.39, with decreasing skill as 

reconstruction length increased (Table C.S1). The nested reconstruction covered the period of 

445-2004 and was used for the comparison with the SWE reconstruction developed by Pederson 

et al. (2011). 

 

A reconstruction of spring SPEI using the original chronologies (with autocorrelation retained) 

was also produced for this study. By retaining low-frequency information in the tree-ring data, 

this reconstruction (here, called the standard chronology reconstruction) was more suitable for 

assessment of low-frequency shifts in spring SPEI. This reconstruction was developed using the 

same nested model methodology and covered the same time period as the reconstruction 

produced using the residual chronologies (445-2004), but the lower model skill (R2
adj ranging 

from 0.33 to 0.32) reduced suitability for comparison with the annual reconstructed SWE values 

(Table C.S1). 

 

Similar to the observed data, the SWE reconstruction and spring SPEI reconstruction were 

converted to percentile rank values to facilitate comparison. Percentile values were calculated for 

the reconstructions for both the full reconstruction period (445-2004) and the instrumental period 

(1937-2004). 
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C.4 OBSERVED INFLUENCE OF SNOWPACK AND SPRING HYDROCLIMATE ON STREAMFLOW 

VOLUMES 

The first objective of this study was to assess the relationship between observed SWE, spring 

SPEI, and spring streamflow for the RGHW. The three observed records were cross-correlated 

using Pearson correlation coefficients assessed at p < 0.05 (Table C.2A). Spring streamflow and 

SWE were strongly and positively correlated (r = 0.79), while spring streamflow and spring SPEI 

had a lower but still significant positive correlation (r = 0.49, Table C.2A). Spring SPEI and 

SWE also showed a weak, but still significant, positive correlation (r = 0.37,Table C.2A). 

Because both SWE and spring SPEI are assumed to influence spring streamflow, partial 

correlations were run, removing the influence of SWE (or spring SPEI) prior to the respective 

correlations between spring SPEI (or SWE) and spring streamflow. This produces a SWE/spring 

streamflow partial correlation of r = 0.75, and a spring SPEI/spring streamflow partial correlation 

of r = 0.35. 

 

Given the strong, significant relationship between SWE and spring streamflow shown in both 

full and partial correlations, snowpack is clearly an important control on Rio Grande streamflow 

volumes from April to June, much more so than spring hydroclimate conditions (as represented 

by SPEI). This finding corresponds with the NRCS streamflow predictions process which 

implicitly assumes SWE is the largest (among several) drivers of spring streamflow (Pagano et 

al., 2009). However, correlation analysis may not capture the full picture of the relationship 

between SWE, spring streamflow, and spring hydroclimate. For example, a year with extremely 

low SWE may be followed by a very cool, wet spring (i.e., high SPEI). These conditions may 
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result in an increase in spring streamflows to volumes higher than anticipated based on the April 

1 SWE measurement. The increase may be enough to ameliorate the lowest flows, but it will not 

completely replace streamflow lost due to a low snowpack. A correlation analysis would indicate 

a below average SWE led to a below average spring streamflow, but it would miss the nuance 

that the below average streamflow was higher than expected due to the influence of the cool, wet 

spring (high SPEI). 

 

To capture the finer distinctions in the relationships between spring SPEI, SWE, and spring 

streamflow (FLOW, from here on), the percentile rank values for each dataset were compared to 

identify outlier years when the difference between the percentile ranks were relatively large. The 

first step in this process compared the annual percentile ranks of spring SPEI and SWE, 

categorizing a year as an outlier when the percentile ranks between the two indices differed by at 

least one quintile (20 percentile ranks). This analysis identified 37 outlier years (out of 68 total) 

where SPEI and SWE differed by at least one quintile. Within the 37 outlier years, SPEI was 

greater than SWE (SPEI>SWE) for 17 years, while SPEI was less than SWE (SPEI<SWE) 

during the remaining 20 years (Table C.S3). The second step in the analysis assessed the 

relationship between FLOW and SWE during the 37 SWE/SPEI outlier years. Because of the 

strong relationship between FLOW and SWE (as identified in correlation analysis), this process 

was intended to identify years when the FLOW was more (or less) than expected based on the 

SWE for that year. Similar to the first step, the FLOW and SWE percentile rank values were 

compared, with outlier years identified as those with at least a one quintile difference. Of the 17 

years where SPEI>SWE, five years had percentile ranks of FLOW one quintile greater than 
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SWE (FLOW>SWE), while the remaining 12 years had FLOW and SWE percentiles within one 

quintile (Table C.3). Assessing the FLOW/SWE relationship for the 20 years when SPEI<SWE, 

only six years were outliers and all six had FLOW less than SWE (FLOW<SWE) by at least one 

quintile (Table C.3). 

 

For further examination, each of the 37 SPEI/SWE outlier years was categorized into a specific 

grouping based on the groupings described above, first on the SPEI/SWE relationship 

(SPEI>SWE, SPEI<SWE) and second on the FLOW/SWE relationship (FLOW>SWE, 

FLOW<SWE, or FLOW is not different from SWE). The percentile values of SWE, spring SPEI, 

and FLOW for the years within each of the four categories were averaged together (Table C.3). 

Additional seasonal temperature and seasonal precipitation percentile values for the years within 

each category were also averaged. The seasons included: previous October to previous 

December, January to March, and April to June. 

 

During the five years when SPEI>SWE and FLOW>SWE, spring SPEI is moderately high (66th 

percentile), while the winter snowpack is very low (19th percentile), and spring streamflow is just 

above the median (55th percentile). The average seasonal climate conditions for these year help 

explain these conditions. Precipitation in the fall to early winter period is near the median, but 

January to March is dry and very warm (80th percentile), leading to lower SWE. In contrast, the 

spring is wet (71st percentile), with temperatures slightly below median (46th percentile). 

Compared with the 12 years where SPEI>SWE but FLOW was within one quintile of SWE, the 

five years with both SPEI>SWE and FLOW>SWE have a wetter early winter, a warmer 
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October-March, and spring FLOW that was slightly above median. The SPEI>SWE and 

FLOW>SWE years also had a much lower SWE, suggesting that when snowpack is extremely 

low, spring conditions may have a greater relative contribution. Additionally, the increase in 

previous October to previous December precipitation seen in FLOW>SWE years may lessen the 

impact of the January to March dry period on the RGHW hydrologic system, resulting in a less 

extreme drop in soil moisture or shallow groundwater levels. When the January to March dry 

period is then followed by an increased amount of spring precipitation, less moisture may be lost 

to dry soil or to shallow groundwater, resulting in a larger increase to streamflow and creating 

the FLOW>SWE conditions. The reverse of this mechanism may play a role in determining why 

six of the twenty years with SPEI<SWE resulted in FLOW<SWE. All 20 SPEI<SWE years had 

similar January to March precipitation and April to June temperatures, but a difference in the 

previous October to previous December climate conditions once again may have played a role. 

During this early winter period, the six FLOW<SWE years were warmer and drier than the other 

14 years. This likely resulted in a drier RGHW hydrologic system going into the spring runoff, 

one that a large snowpack produced by a cool and wet January to March could not overcome, 

and thus leading to a lower FLOW than expected from the SWE measurements. 

 

C.5 UNDERSTANDING THE PAST RELATIONSHIP BETWEEN SNOWPACK AND SPRING 

HYDROCLIMATE 

The second objective of this study centered on understanding the pre-instrumental relationship 

between snowpack and spring hydroclimate conditions in order to situate the observed 

relationship between SWE and spring SPEI within a broader historic context. To assess this pre-
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instrumental relationship, the reconstruction of SWE from Pederson et al. (2011) and the two 

new reconstructions of spring SPEI were used (Table C.1B). Because the spring SPEI 

reconstruction composed of residual chronologies (here called “spring SPEI reconstruction”) 

better simulated the year-to-year variability during the instrumental period and matched the lack 

of autocorrelation seen in the calibration data, it was used in the annual comparison with 

reconstructed SWE. The spring SPEI standard chronology reconstruction was reserved for 

comparisons between reconstructions requiring the retention of low-frequency variability. The 

first step in addressing the second objective was to examine the ability of the of spring SPEI and 

SWE reconstructions to capture the relationships in the observed data. Once that was established, 

the multi-century relationships between spring SPEI and SWE relationship were assessed, with a 

focus on extreme events (i.e., megadroughts or extended pluvials). 

 

Both spring SPEI reconstructions were correlated with the SWE reconstruction over the 

instrumental period (1937-2004). Both reconstructions had moderate and significant correlations 

with SWE (respectively, r = 0.533 and r = 0.504, Table C.2B), slightly stronger than the 

correlation calculated between observed SPEI and SWE index data (r = 0.365, Table C.2B). This 

indicates the reconstructions may slightly overestimate the connection between SPEI and SWE, 

although the SPEI and SWE reconstructions were developed using independent sets of 

chronologies, reducing the likelihood of covariance between tree-ring data. 

 

The comparisons between the reconstructions of SWE and spring SPEI based on percentile 

values for the instrumental period producing results similar to the comparison between the 
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observed SWE and spring SPEI percentiles, especially in the years where SPEI>SWE (Fig. C.3, 

last two columns). Although the proportion of years compared are similar, the percent of years 

with SPEI<SWE was slightly overestimated, while the percent years where SPEI and SWE were 

within one quintile was correspondingly underestimated. The underestimation of years with 

SPEI/SWE percentile ranks within one quintile may counter the impact of a slightly stronger 

correlation between the reconstructed SPEI and SWE (relative to observed data) and the 

potential for an increase in non-outlier SPEI/SWE years due to the increased correlation. To 

further assess the similarity between the observed and reconstructed series, the annual percentile 

difference between SWE and spring SPEI percentiles was calculated for the observed data and 

reconstructed data by subtracting the SWE percentile rank from the spring SPEI percentile rank 

for each year in the observation period (1937-2004). This process allowed for a visual 

assessment of reconstruction skill capturing the annual variability of the difference between the 

indices (Figure C.S3). The annual percentile difference values for the reconstructed and observed 

data were moderately and significantly correlated (r = 0.606, p < 0.05) indicating skill in 

capturing annual percentile differences between SWE and SPEI. 

 

C.5.1 Reconstructed Percentile Rank Comparison 

The reconstructed spring SPEI and SWE percentiles were compared for the full reconstruction 

period (445-2004), and the years were categorized as either SPEI>SWE, SPEI<SWE, or SPEI 

within one quintile of SWE (Fig. C.3, far left column). During the full reconstruction period, 

47% of years had SPEI within one quintile of SWE, while both SPEI<SWE and SPEI>SWE 

each constituted 26% of the years (rounding may result in total percentages not equal to 100%). 
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The same analysis was carried out by century to examine the frequency of the three types of 

years, from the 6th through the 20th century (Fig. C.3). This revealed a variability in the 

percentages from century to century, with slightly less variability in the percent of years when 

spring was drier relative to winter snowpack (SPEI<SWE). Two centuries, the 7th and the 13th, 

both had fewer than 40% of years when SPEI was within one quintile of SWE. The 7th century 

also stands out as having the highest percent of years when spring was wet relative to the winter 

snowpack. Although relatively large increases in spring precipitation do not necessarily result in 

higher streamflows (as shown in the observed comparisons), poor snowpack years in the 7th 

century were more likely to be followed by a cooler, wetter spring that may have, in turn, 

boosted spring streamflow. Conversely, the 14th century had the highest percent of years when 

spring was relatively drier than winter, increasing the chance that a warm, dry spring during this 

century may have been more likely to negatively impact streamflow volumes. 

 

Because the comparison analysis between SPEI and SWE reconstructions used percentile rank 

values, the years when SPEI<SWE and SPEI>SWE were determined by the relative difference 

between the two indices not the actual values of SPEI and SWE. To investigate the actual values 

of SWE and SPEI in these years, the average values of SPEI and SWE were calculated for the 

years when SPEI>SWE and years when SPEI<SWE (Figures 4A and 4B, respectively), both for 

the full reconstruction and by century. In years when SPEI<SWE, average SPEI is always below 

the median and average SWE is always greater than the median, that is, winters tend to have a 

higher snowpack, and springs are warm and dry (Fig. C.4A). The reverse is true for years when 

SPEI>SWE, with average SPEI always greater than the median and average SWE always less 
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than the median (Fig. C.4B). However, there is considerable variability from century to century. 

For example, SPEI>SWE years in the 17th century were characterized by extremely wet and cool 

springs (average SPEI = 0.99) and close to average snowpacks (average SWE = -0.21), while 

SPEI>SWE years in the 6th century were characterized more by extremely low snowpacks 

(average SWE = -0.91) followed by moderately wetter springs (average SPEI = 0.45). Years 

when spring was drier relative to the preceding winter had similar variability in average SPEI 

and SWE values. For example, the 6th century again stands out, in this case, with very high 

snowpack (average SWE = 0.93), and only moderately warm/dry spring (average SPEI = -0.41). 

In the percentile comparisons (Fig. C.3), this does not stand out as a notable century. These 

results highlight how, within the constraints of the SPEI<SWE and SPEI>SWE categorization, 

the relative value of the climate indices can be quite variable from century to century. 

 

C.5.2 Climate Relationships during Megadroughts and Extended Pluvials 

The relationships between SWE and spring SPEI in the reconstructions were also evaluated 

during periods of persistent drought or pluvials. The most extreme droughts and pluvials were 

identified using a regional time series of June-August PDSI (Palmer Drought Severity Index) 

data from the NADA (North American Drought Atlas, Cook et al., 2004), averaging grid point 

reconstructions from eight NADA pixels corresponding to the RGHW (and matching the 0.5° x 

0.5° SPEI data coverage (Fig. C.1)). The regional PDSI reconstruction was smoothed with a 20-

year spline (Bunn, 2008) to highlight decadal variability. The five highest and five lowest PDSI 

values were selected from the smoothed data as representations of the wettest and driest non-

overlapping periods. Because the smoothing process integrated data from before and after each 
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PDSI value, the period that represented this value included the 10 years prior and after the year 

of the value, resulting in a 21-year interval used in the analysis. PDSI was chosen to identify the 

extremes conditions because of the length of the index and because June-August PDSI reflects 

antecedent conditions that include both winter and spring moisture (St. George et al., 2010). 

 

The percent of years when SPEI>SWE or SPEI<SWE exhibits more variability during the 

drought and pluvial events compared to the century specific analysis (Fig. C.5). During the five 

strongest pluvial events, spring conditions were relatively drier than the preceding winter 43% of 

the time, while only 11% of pluvial years had a spring that was wetter than the preceding winter. 

This disparity may be explained by the carryover of soil moisture from preceding months that are 

included in the PDSI calculation. While the NADA was intended to reconstruct June-August 

drought conditions, St. George et al. (2010) identified the potential in the Southwestern United 

States for strong moisture anomalies in the winter to be carried over into the calculation of 

summer PDSI. If that is the case, the SWE reconstruction and the PDSI reconstruction may 

represent the same winter hydrologic conditions. This is supported by the strong correlation (r = 

0.627, p <0.05) between the annual SWE reconstruction and the NADA PDSI over the full 

reconstruction period. Therefore, major pluvial events identified using PDSI are more likely to 

be characterized by extremely high snowpack years, making years when spring conditions are 

wetter than winter conditions less likely to occur. 

 

The same bias in the identification of extreme droughts could be assumed, with PDSI values 

largely driven by reduced winter snowpacks, and spring conditions generally wetter than the 
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preceding winter. While this holds for the late 13th and late 16th century megadroughts (with 0% 

and 5% of years where SPEI<SWE, respectively), the remaining three megadroughts each have 

at least 19% of years where springs are drier than the preceding winters. This has potential 

implications for spring streamflow during the megadrought events. The observational 

comparisons indicated that a dry spring following an above average snowpack has the potential 

to reduce spring streamflow, therefore a dry spring following a below average snowpack may 

further decrease spring streamflow, resulting in extremely reduced streamflows. Overall, the 

analysis of extreme events from the PDSI record indicates that megadroughts may be a product 

of both winter and spring conditions, while extreme pluvials are more likely to be driven by 

winter snowpack alone. 

 

C.5.3 Multi-Decadal Variability in Snowpack and Spring Hydroclimatic Reconstructions 

As a final analysis, the spring SPEI standard chronology reconstruction was compared with the 

SWE reconstruction to evaluate long-term, low-frequency variability and identify the way these 

climate parameters may have interacted during the persistent extreme events identified from the 

PDSI reconstruction. Both reconstructions were smoothed with a 20-year spline (Bunn, 2008) to 

highlight decadal variability (Fig. C.6). A consistent relationship is not evident between 

reconstructed SWE and spring SPEI, and this is further corroborated by the weak, but still 

significant Pearson correlation coefficient (r = 0.313, p < 0.05, p-value calculated using 

autocorrelation adjusted effective degrees of freedom (Hu et al., 2017)). Periods of coherence 

between the reconstructions in the 10th and 11th centuries are followed by periods with little 

similarity between the two indices the 12th to the 15th century, such as the large difference 



 158 

between SWE and spring SPEI conditions after 1200. The reconstructions again have more 

temporal coherence starting in the 16th century and this pattern continues until the present (Fig. 

C.6). 

 

The periods of megadrought and extreme pluvials indicated in Figure C.6 help highlight the 

dynamics between spring SPEI and SWE reconstructions. During the five pluvials, SWE and 

SPEI are consistently positive, with SWE values greater than spring SPEI values in all but one 

period (the early 19th century pluvial). This pattern is largely in agreement with the previous 

comparison between the SPEI and SWE percentile ranks during extreme pluvials, which 

indicated the pluvials were driven primarily by winter, not spring, conditions. Periods when 

spring SPEI is elevated, such as the mid 7th and late 14th centuries, do not correspond with 

pluvial events identified in the PDSI, likely because the concurrent winter snowpack was not 

similarly elevated. In certain instances when snowpack is elevated but spring SPEI is severely 

depressed (such as the late 11th century), it does appear that the reduced spring SPEI prevented 

the conditions for a pluvial in the PDSI record. 

 

During the five megadroughts, the SWE and SPEI values were all negative with the exception of 

spring SPEI during the 6th century megadrought. The megadroughts in the late 13th and 16th 

centuries are notable because of the simultaneous drops in both SWE and SPEI that occurred. 

Both the 13th century “Great Drought” and the 16th century megadrought have been identified in 

other tree-ring based reconstructions due to their duration and severity (Douglass, 1929; Stahle et 

al., 2000, 2007). A recent reconstruction found that the late 16th century drought was the most 
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severe period of summer soil moisture deficits in the southwestern portion of North America 

between 800 and 2019 (Williams et al., 2020). However, both reconstructions were based on the 

reproduction of winter or summer variability, or both in conjunction. The reconstruction of 

spring SPEI produced for this study indicates that a third season, spring, may have additionally 

contribution to the severity of these droughts due to the conjoined effects of winter and spring 

moisture deficits. 

 

C.6 CONCLUSION 

The introduction to this study proposed that a cool, wet spring after a warm, dry winter in the 

RGHW could potentially increase spring streamflow on the Rio Grande relative to those 

streamflows expected given the preceding winter snowpack. The first objective of this study was 

to identify the relationship between observed snowpack, spring hydroclimate, and spring 

streamflow data in the RGHW, first identifying years when large differences between snowpack 

and spring hydroclimate may have occurred and second determining whether those years 

coincided with increases in streamflow relative to snowpack-based expectations. After 

conversion to percentile rank values, we identified a majority of years in the observed record (37 

out of 68 years) as having a significant difference between snowpack and spring hydroclimate 

conditions. Additionally, 11 of those 37 years had a significant difference between snowpack and 

spring streamflow, with five of the 11 years having streamflows greater than expected based on 

snowpack and the remaining six years having streamflows less than expected based on 

snowpack. Therefore, while rare, there was evidence that during five years (out of 68) the cooler 



 160 

and wetter spring hydroclimate conditions coincided with spring streamflows on the Rio Grande 

that were higher than the streamflow volumes expected based on the previous snowpack. 

 

The preceding late-fall to early-winter climate conditions may have been the key factor 

determining why the 11 years with differences between streamflow and snowpack occurred. A 

cool, wet early winter (previous October to previous December) followed by a warm, dry late 

winter (January to March) and a cool, wet spring (April to June) are associated with an increase 

streamflow relative to snowpack. One explanation is the early season moisture may increase the 

relative moisture content of the RGHW hydrologic system (soil moisture, shallow groundwater, 

etc.); thus, despite a warmer and drier late-winter, when spring moisture returns, it is not 

absorbed by the hydrologic system but quickly results in streamflow. The reverse of these 

climatic conditions (dry early winter, wet January-March, then warm, dry spring) corresponds 

with a reduction in streamflow relative to snowpack. The preceding warm, dry conditions in the 

early winter may reduce total moisture in the hydrologic system and lead to reductions in 

streamflow that can’t be compensated by a greater snowfall in late-winter. 

 

With climate change expected to increase winter temperatures in the RGHW, snowpack is 

projected to decrease (Llewellyn & Vaddey, 2013). A warmer winter will lead to both an earlier 

start and a longer period of snowmelt that will reduce the yield from the snowpack due to 

increased rates of sublimation and evapotranspiration (Barnhart et al., 2016; Harpold & Brooks, 

2018). If reductions in snowpack and reductions in spring streamflow relative to snowpack totals 

were to become common, a cool, wet spring may have an even larger impact on streamflow 
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volumes. This is similar to findings from Chavarria and Gutzler (2018), where it was argued that 

continued warming will result in spring precipitation playing a large role in Rio Grande 

streamflows. All five years where cool, wet springs increased streamflow relative to snowpacks 

occurred during the latter half of instrumental period, as temperatures in the RGHW were 

already increasing, indicating that this shift may have already begun. 

 

The second objective of this study evaluated the relationship between winter snowpack and 

spring hydroclimate conditions over the past 16 centuries in order to provide a broader context 

for the observed comparison of snowpack and spring hydroclimate conditions. The April to June 

SPEI reconstruction developed in this study to address this objective is the first reconstruction of 

a late-spring/early summer drought index specifically produced for the RGHW or the wider 

southwestern United States. The reconstruction successfully captures variability in April-June 

SPEI and provides a new, more than 1500 year record of paleoclimate conditions for a unique 

time of year. Although moisture reconstructions in the RGHW typically have higher skill (e.g., 

Woodhouse et al., 2012), by utilizing P. aristata as a paleo-climate proxy we traded 

reconstruction skill for a longer period of record. The tests for reconstruction stability in the 

supplemental material confirm the SPEI reconstruction is statistically robust. The comparison of 

this new reconstruction of spring SPEI with the previously produced reconstruction of SWE 

(Pederson et al., 2011) gives insight into the relationship between these seasonal hydroclimatic 

variables. 
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Comparing the relationship between reconstructed spring SPEI and SWE for the instrumental 

period (1937-2004) with reconstructed relationship for the full reconstruction period (445-2004), 

there is a similarity in the percentage of years falling into the categories of SPEI>SWE, 

SPEI<SWE, or SPEI and SWE within one quintile. However, when the full reconstruction is 

analyzed by century, there is more variability evident in the century-specific percentages, 

particularly so with years when spring SPEI is greater than winter snowpack. Although this 

larger variability might suggest certain centuries had an increased likelihood for a cool, wet 

spring which could result in an increase in streamflow relative to snowpack, it is important to 

recall from the observational data that only 29% of years when SPEI>SWE saw a concomitant 

increase in streamflow relative to snowpack. Applying this ratio (29%) to the reconstructed data 

can produce an estimated percentage of years where a wet spring may have resulted in increased 

streamflow volumes. The 6th century had the highest percent of SPEI>SWE years at 37% (or 37 

out of 100 years), but the application of the observational ratio results in an estimation of only 10 

years where wet spring conditions may have resulted in a larger streamflow relative to 

snowpack. This once in a decade occurrence (10%) is very similar to the 7% of years seen in the 

observed record. Therefore, while the comparison process does show century to century 

variability in the relationship between reconstructed spring SPEI and SWE, this variability does 

not necessarily mean the likelihood of extreme spring hydroclimate conditions altering 

streamflow volumes is markedly different than that observed during the instrumental period. 

 

Examination of SWE and spring SPEI during periods of megadroughts and extreme pluvials 

provides further insight into the interaction between the winter snow and spring hydroclimate 
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conditions. The pluvial events, as defined by the PDSI reconstruction for the RGHW (Cook et 

al., 2004), were largely driven by increases in snowpack relative to spring hydroclimatic 

conditions, and it was very rare for spring SPEI to be larger than winter SWE. Therefore, the 

chance that a cool, wet spring could increase streamflow relative to snowpack during a pluvial 

was also reduced. The plot of 20-yr smoothed SPEI and SWE reconstructions reinforce this 

conclusion, with all but one of the pluvials coinciding with periods where SWE values were 

greater than SPEI values. All of these findings point to the dominance of winter precipitation 

during pluvial events in the RGHW and the weak additive effect of spring hydroclimatic 

conditions on the pluvials. 

 

Conversely, the megadroughts in the RGHW saw a relatively large percentage of years 

(compared to the pluvials) where spring conditions may have added to the severity of the event. 

The megadrought periods were more likely to see values of spring SPEI lower than winter SWE, 

increasing the chance that a dry spring may have further exacerbated low streamflow on the Rio 

Grande. While spring conditions do appear to have a larger influence on the RGHW 

megadroughts, they alone do not drive lower PDSI values, as several periods with extremely low 

SPEI values and moderate to high SWE values do not coincide with megadroughts. Finally, the 

late 16th century megadrought stands out for the coinciding severity of the declines in spring 

SPEI and SWE. Previous reconstructions identified this period as one of the most severe 

droughts in the western United States, however the reconstructions were developed for either 

winter or summer conditions (Stahle et al., 2000, 2007; Williams et al., 2020). This novel 

reconstruction of spring SPEI also shows that a steep decline in spring precipitation during the 
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late 16th century may have provided an additional factor which contributed to the severity of the 

megadrought. 

 

The results presented here indicate it is possible for spring hydroclimatic conditions to have a 

significant influence on Rio Grande spring streamflow, producing changes in runoff volume 

different than that expected from snowpack alone. With increasing temperatures expected in the 

RGHW, the importance of a cool, wet spring which partially ameliorates the effects of a poor 

snowpack will continue to increase. However, both instrumental and reconstruction-based 

comparisons between snowpack and spring hydroclimate indicate that the potential for an 

extremely wet spring to increase streamflow is rare. Water managers therefore should both 

recognize the increasing importance of these events, while simultaneously tempering 

expectations that they will alleviate the increasingly likelihood of climate-induced drought stress 

on the Rio Grande. 
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C.9 TABLES 

 

Table C.1.  Observed (A) and reconstructed (B) time series used in this study. 

 

A)  

Time Series 

Abbreviation 
Time Series Full Name Years Source 

SWE 
Rio Grande Headwaters April 1 Snow 

Water Equivalent 

1937-

2004 

Pederson et 

al., 2011 

Spring SPEI 

Rio Grande Headwaters April-June 

Standardized Precipitation-

Evapotranspiration Index 

1902-

2018 

Vicente-

Serrano et 

al., 2010 

Spring streamflow 
Del Norte gage along the Rio Grande 

April-June Streamflow 

1908-

2021 

USGS, 

2021a 

 

B)  

Time Series 

Abbreviation 
Time Series Full Name Years Source 

SWE 
Reconstructed Rio Grande Headwaters 

April 1 Snow Water Equivalent 

369-

2005 

Pederson et 

al., 2011 

Spring SPEI 

Reconstruction of Rio Grande Headwaters 

April-June Standardized Precipitation-

Evapotranspiration Index using residual 

chronologies 

445-

2004 
This study 

Spring SPEI (Std. 

Chron.) 

Reconstruction of Rio Grande Headwaters 

April-June Standardized Precipitation-

Evapotranspiration Index using standard 

chronologies 

445-

2004 
This study 
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Table C.2.  Correlations between all observational datasets (A) and correlations between 

reconstruction datasets of SWE and spring SPEI based on residual chronologies (B). The 

correlations are calculated for the instrumental period 1937-2004 and the reconstruction based on 

standard chronologies is in parentheses. 

 

A)  

 SWE Spring SPEI 
Spring 

Streamflow 

SWE 1.000 ~ ~ 

Spring SPEI 0.365 1.000 ~ 

Spring Streamflow 0.785 0.486 1.000 

 

B)  

 SWE Spring SPEI 

SWE 1.000 ~ 

Spring SPEI (Std. Chron.) 0.553 (0.504) 1.000 
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Table C.3.  Number of years and average percentile values for SWE, spring SPEI, spring 

streamflow, seasonal precipitation, and seasonal temperature for years classified by the 

relationships between SPEI/SWE and FLOW/SWE. Colors codes correspond with average 

percentile values: greens/blues = wet/cool; oranges/red= dry/warm; white=near median. 

 

  
# 

Yrs. 
SWE 

Spring 

SPEI 

Spring 

Flow 

Precipitation Temperature 

  pOct-

pDec 

Jan-

Mar 

Apr-

Jun 

pOct-

pDec 

Jan-

Mar 

Apr-

Jun 

SPEI > 

SWE 

FLOW 

> SWE 
5 19 66 55 52 30 71 67 80 46 

FLOW 

≯ SWE 
12 32 73 33 38 32 70 59 64 41 

SPEI < 

SWE 

FLOW 

< SWE 
6 65 33 37 33 64 40 59 48 58 

FLOW 

≮ SWE 
14 65 30 65 69 61 32 39 38 59 
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C.10 FIGURES 

 

 

Figure C.1.  Study area map showing the Rio Grande Headwaters Basin (RGHW, thick black 

line), the GHCN Colorado Climate Division 5 (thick red line), and the outline of the gridded 

product pixels used to select SPEI and PDSI data (dashed black and white line). The Del Norte 

Gage (black and white circle) and the P. aristata chronologies (green trees) used in this study are 

also indicated. The inset shows the study area in the context of the upper Rio Grande Basin 

(hashed black lines).  
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A) 

 

B) 

 

Figure C.2.  Climograph (A) of the average monthly temperatures (red) and monthly 

precipitation totals (blue) for the Colorado Climate Division 5 from 1991-2020 (Menne et al., 

2018). Hydrograph (B) with average monthly total streamflow from 1908-2020 for the Del Norte 

gage along the Rio Grande (U.S. Geological Survey Gage 8220000).  
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Figure C.3.  Percentile rank comparison between the spring SPEI reconstruction and the SWE 

reconstruction(Pederson et al. 2011). Each column shows the percent of years with a specific 

SPEI and SWE percentile relationship (SPEI<SWE, SPEI>SWE, SPEI within one quintile of 

SWE). Years with SPEI<SWE had spring conditions that were warmer and drier than the 

preceding winters, while SPEI>SWE years had spring conditions that were cooler and wetter 

than the preceding winters. The first column shows the percentages for the full period of the 

reconstruction (445-2004) followed by the percentages by century (6th to 20th centuries). The last 

two columns show the percentile relationship percentages during the instrumental period (1937-

2004) for the reconstructed and observed data.  
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A) 

 

B) 

 

 

Figure C.4.  The average SPEI and SWE values during years when (A) spring conditions were 

warmer and drier than the preceding winter (SPEI<SWE) and (B) spring conditions were cooler 

and wetter than the preceding winter (SPEI>SWE). Values are shown for the full reconstruction 

period (445-2004, left hand column), by century (middle 15 columns), and the instrumental 

period (1937-2004, 2 right hand columns). The instrumental period average values are for the 

reconstructed and the observed data.  
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Figure C.5.  Percentile rank comparison between the RGHW spring SPEI and SWE 

reconstructions during the top five megadroughts (top) and top five pluvials (bottom) as 

determined from the RGHW PDSI reconstruction (PDSI values of middle year in parenthesis). 

Each bar shows the percent of years with a specific SPEI and SWE percentile relationship 

(SPEI<SWE, SPEI>SWE, SPEI within one quintile of SWE). Years with SPEI<SWE had spring 

conditions that were warmer and drier than the preceding winters, while SPEI>SWE years had 

spring conditions that were cooler and wetter than the preceding winters. In addition, average 

percentile rank comparison percentages for the five megadroughts and for the five pluvials were 

calculated.

0% 20% 40% 60% 80% 100%

- Droughts -

554-574 (-1.530)

995-1015 (-1.607)

1139-1159 (-2.036)

1270-1290 (-1.510)

1572-1592 (-1.866)

Average

- Pluvials -

1107-1127 (2.414)

1321-1341 (2.048)

1477-1497 (1.814)

1826-1846 (2.316)

1904-1924 (2.515)

Average
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SPEI > SWE
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Figure C.6.  Standard chronology reconstruction of spring SPEI (blue) and reconstruction of SWE (red) over the full period of 

reconstruction (445-2004), smoothed with a 20-yr smoothed spline. The top five 21-year megadroughts (orange) and pluvial events 

(green), identified using RGHW PDSI, are highlighted.
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C.11  SUPPLEMENTAL INFORMATION 

C.11.S1 Chronology Preparation and Screening 

The chronologies included in the predictor pool for the reconstruction model included all Rocky 

Mountain bristlecone pine (Pinus aristata Engelm.) chronologies used by Tintor & Woodhouse 

(2021) for their broad based evaluation of P. aristata climate sensitivity. Standardization and 

chronology development followed the approach from Woodhouse & Pederson (2018) with tree-

ring widths conservatively detrended using a negative exponential/straight line fit using the 

“dplR” package (Bunn, 2008). Individual series were variance stabilized using a power 

transformation to account for changing numbers of samples over time (Cook & Peters, 1997) 

then combined into a single site specific chronology using a robust bi-weight mean (Cook & 

Kairiukstis, 2013). Both standard (retaining autocorrelation) and residual (removing 

autocorrelation) versions of the site-specific chronologies were produced. Chronologies were 

then screened for significant correlations with the Rio Grande Headwaters April-June 

Standardized Precipitation-Evapotranspiration Index (RGHW AMJ SPEI) data over the 1900-

2006 common interval. Five of the 11 chronologies from Tintor and Woodhouse (2021) passed 

the screening test: Black Mountain (BLK), Little Costilla Peak Low (LCL), Sheep Mountain 

(SHM), Summitville (SMV), Windy Peak (WPK). The locations of the five chronologies are 

shown in Figure C.1. 

 

C.11.S2 Reconstruction Development 

The reconstruction process used a truncated version of the SSR (single-site reconstruction) 

process from Meko (1997), with two reconstructions produced (one using residual chronologies 

and one using standard chronologies). The process began with all five of the chronologies, and 
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includes the chronologies lagged forward and backward 1 and 2 years. This resulted in a total 25 

potential predictors (5 original, 5 lag1, 5 lag2, 5 lead1, 5 lead2). This was done to capture 

potential multi-year biologic responses to climate still present in the time series after detrending. 

The 25 time series were then correlated with instrumental spring SPEI data from 1902-2004 (2 

years taken off the beginning and the end due to the lag). A forward stepwise regression was then 

run on the time series, with new additions halted when the predictor produced a decrease in the 

Reduction of Error (RE) statistic (Cook & Kairiukstis, 2013). This process was repeated after 

removing the shortest chronology (in this case LCL), running the preceding steps on the 

remaining 20 time series. This process was repeated a third, and final, time, removing the second 

shortest chronology (SHM), again using the preceding process, this time on 15 time series. The 

process was stopped when the number of chronologies dropped below 3. This methodology was 

run twice, once for standard chronologies and once for residual chronologies.  

 

The final suite of models was selected using adjusted coefficient of determination (R2 
adj) values, 

Durbin Watson test, and cross-validation statistics (Tables C.S1 and C.S2). The Durbin Watson 

test identified whether excessive autocorrelation in the residual values of the reconstruction 

models was present. High autocorrelation in the residual values may lead to an underestimation 

of true standard errors and a suggestion of significance where there is none. The “cvTools” 

package was used to calculate cross-validation using the Leave-One-Out and the K-folds 

methods (Table C.S1, Alfons, 2012). The K-folds method withheld a random set of 10 sequential 

observations from the model fitting then tested the prediction accuracy, repeating the process 100 

times. Split sample statistics were calculated for each model as an additional check (Table C.S2). 

The periods used in the split sample statistics were 1902-1952 and 1953-2004. 
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The descriptive statistics for both the residual and standard chronology based spring SPEI 

reconstruction models are shown in Supplemental Table C.S1. The skill (R2
adj) of the models 

based on residual chronologies ranged from 0.45 to 0.39 as the length of the reconstruction 

increased. The skill of the models based on standard chronologies was slightly less (0.33 to 

0.32), but in both cases the RE (Standard Error) and RMSE (Root Mean Square of Error) 

statistics indicate good validation for all of the models. The residuals of all reconstruction 

models meet the assumption of a lack of significant low order autocorrelation (as determined by 

Durbin-Watson test). The split sample RE (Reduction of Error) and RMSEv statistics are similar 

to those for the full period and further suggest the stability of the reconstruction models over 

time (Table C.S2). In the residual chronology models BLK is the leading predictor in all three 

models, while in the standard chronology models SMV is the leading predictor in the longer 

model and BLK is the leading predictor in the shortest model. All but one of the reconstruction 

models incorporate at least one predictor which is lagged forward one year.  

 

All three models developed using residual chronologies were chosen for the reconstruction, 

while only two were chosen for the reconstruction using standard chronologies as two of the 

models had identical inputs and therefore identical statistical properties (Table C.S1). To develop 

the final full nested reconstructions, the mean and variance for each reconstruction were scaled 

to match the mean and variance for the instrumental spring SPEI data. Although this is a 

common practice, it should be acknowledged that scaling the mean and variance can result in an 

increase in reconstruction error in some years. The mean and variance stabilized reconstructions 

using residual chronologies and reconstructions using standard chronologies were then nested 
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backward in time to generate, respectively, a single reconstruction for the residual chronologies 

and single reconstruction for standard chronologies, both spanning the period 445-2004 CE. A 

comparison of the observed and reconstructed spring SPEI time series for the residual and 

standard reconstructions are shown in Figures C.S1 and C.S2 respectively. 
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C.11.S3 Supplemental Tables 

 

Table C.S1.  Descriptive statistics for spring SPEI reconstructions developed using residual (A) and standard (B) chronologies. In the 

equations section, P1 (and N1) indicates a chronology lagged forward (or backward) by 1 year.  

 

 

 

A) Spring SPEI Reconstruction using Residual Chronologies 

Model 
Reconstruction 

Years 
Predictors 

Calibration 

Period 
R2

adj 
Standard 

Error (SE) 

Leave-One-

Out Cross 

Validation 

(RMSEv) 

K-folds Mean 

Value 

(RMSEv) 

AR1 D-W Test 
D-W 

P-value 

1R 445-1609 3 1902-2004 0.392 0.726 0.743 0.744 -0.284 2.277 0.156 

2R 1610-1805 7 1902-2004 0.443 0.694 0.720 0.722 -0.269 2.160 0.388 

3R 1806-2004 6 1902-2004 0.447 0.692 0.710 0.711 -0.078 2.054 0.746 

Model Equation 

1R AMJ SPEI = -1.766 + 0.633*WPK + 0.8198*SMV + 0.992*BLK - 0.628*P1_SMV 

2R AMJ SPEI = -1.902 + 0.806*WPK + 0.645*SMV + 1.516*BLK - 1.253*SHM - 0.894*P1_SMV + 1.484*P1_SHM - 0.357*N1_WPK 

3R AMJ SPEI = -2.642 + 0.948*WPK + 1.232*BLK + 1.025*LCL - 1.029*SHM - 0.995*P1_SMV + 1.467*P1_SHM 

B) Spring SPEI Reconstruction using Standard Chronologies 

Model 
Reconstruction 

Years 
Predictors 

Calibration 

Period 
R2

adj 
Standard 

Error (SE) 

Leave-One-

Out Cross 

Validation 

(RMSEv) 

K-folds Mean 

Value 

(RMSEv) 

AR1 D-W Test 
D-W 

P-value 

1S 445-1610 2 1902-2004 0.318 0.768 0.778 0.778 0.309 2.271 0.194 

2S 1611-2004 5 1902-2004 0.334 0.760 0.781 0.782 0.358 2.187 0.448 

Model Equation 

1S AMJ SPEI = -2.043 + 1.140*SMV + 0.988*BLK 

2S AMJ SPEI = -2.143 + 1.253*SMV + 1.332*BLK - 1.024*SHM + 1.217*P1_SHM - 0.474*P1_WPK 
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Table C.S2.  Split-sample calibration and validation for the spring SPEI reconstruction models 

using residual chronologies (A) and standard chronologies (B). 

 

A) Split Period Calibration of Spring SPEI Reconstruction using Residual Chronologies 

Model 
Model Time 

Span 

Calibration 

Period 
n 

Early Calibration Late Validation 

R2
adj SE RE RMSEv 

1R 445-1609 1902-1952 51 0.404 0.719 0.347 0.762 

2R 1610-1805 1902-1952 51 0.398 0.723 0.438 0.707 

3R 1806-2004 1902-1952 51 0.350 0.751 0.482 0.679 

Model  
Model Time 

Span 

Calibration 

Period 
n 

Late Calibration Early Validation 

R2
adj SE RE RMSEv 

1R 445-1609 1953-2004 52 0.388 0.731 0.228 0.809 

2R 1610-1805 1953-2004 52 0.469 0.682 0.332 0.753 

3R 1806-2004 1953-2004 52 0.510 0.654 0.351 0.742 

 

B) Split Period Calibration of Spring SPEI Reconstruction using Standard Chronologies 

Model 
Model Time 

Span 

Calibration 

Period 
n 

Early Calibration Late Validation 

R2
adj SE RE RMSEv 

1S 443-1607 1902-1952 51 0.386 0.730 0.241 0.822 

2S 1608-2004 1902-1952 51 0.363 0.743 0.256 0.813 

Model 
Model Time 

Span 

Calibration 

Period 
n 

Late Calibration Early Validation 

R2
adj SE RE RMSEv 

1S 443-1607 1953-2004 52 0.236 0.817 0.390 0.720 

2S 1608-2004 1953-2004 52 0.287 0.789 0.266 0.790 
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Table C.S3.  Years in each SPEI/SWE and FLOW/SWE categorization based on the percentile 

value relationships of the instrumental dataset from 1937-2004.Less than and greater than 

symbols represent at least one quintile difference in the ranking.  

 

SPEI > SWE SPEI < SWE 

FLOW > 

SWE 

FLOW ≯ 

SWE 

FLOW < 

SWE 

FLOW ≮ 

 SWE 

1971 1947 1937 1939 

1986 1953 1943 1950 

1990 1955 1945 1952 

1999 1959 1956 1954 

 2004 1967 1974 1960 

  1977 1993 1961 

  1978   1962 

  1981   1968 

  1983   1975 

 1988  1979 

 1995  1985 

 1997  1987 

   1989 

   2001 
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C.11.S4 Supplemental Figures 

 

 
 

Figure C.S1.  Comparison between the observed spring SPEI (red) and the spring SPEI 

reconstruction constructed with residual chronologies (blue) over the common interval of 1902-

2004. 

 

 

 
 

Figure C.S2.  Comparison between the observed spring SPEI (red) and the spring SPEI 

reconstruction constructed with standard chronologies (blue) over the common interval of 1902-

2004.  
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Figure C.S3.  Comparison of the percentile rank difference between observed SWE and SPEI 

(red) and the percentile rank difference between reconstructed SWE and spring SPEI 

reconstruction (blue) over the common interval of 1937-2004. For both time series the SWE 

percentile rank was subtracted from the SPEI percentile rank to produce a percentile difference 

value. The spring SPEI reconstruction used in this figure is the reconstruction developed from 

residual chronologies. 
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