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A B S T R A C T   

Recent increases in temperature over the semi-arid western United States have been shown to exacerbate 
drought, reducing streamflow, and increasing stress on ecosystems. Our understanding of the role temperature 
played during drought in the more distant past is far from complete. While numerous tree-ring proxy records of 
moisture provide evidence for past extreme droughts in this region, few contemporaneous tree-ring proxy records 
of temperatures exist. This limits our ability to evaluate the variable influence of temperature on drought over 
past centuries and to contextualize the present interplay of moisture and temperature during more recent 
drought events. It is also important to understand the complexity of climatic interactions that produced drought 
under natural variability prior to evaluating the potential impacts of future climate change. In response to this 
knowledge gap, we undertook the first extensive evaluation of climate sensitivity in Rocky Mountain bristlecone 
pine (Pinus aristata Engelm.), focusing on the potential for developing new multi-century proxy records of both 
temperature and precipitation. We isolated dominant patterns of growth variability among trees from ten ring- 
width datasets across the Southern Rocky Mountains of Colorado and New Mexico and assessed their response to 
climate. We utilized both an empirical orthogonal function (EOF) analysis and a modified form of hierarchical 
cluster analysis to produce time series representing growth patterns in P. aristata. The results indicate a wide
spread June drought stress signal with a high potential for multi-millennial reconstruction. We also found a 
positive minimum temperature response during late summer, evident only at lower frequency and co-occurring 
at locations with the June drought stress signal. The potential for temperature reconstruction will require further 
investigation into the physiological linkages between P. aristata and climate variability. The presence of multiple 
climate responses within P. aristata sampling sites highlights the need for particular care when including 
P. aristata in regional climate reconstructions.   

1. Introduction 

Tree-ring reconstructions of precipitation and streamflow in the 
semi-arid western U.S. provide an expanded framework for contextu
alizing both the severity of current droughts and the impact of predicted 
climate change over the next century (Meko and Woodhouse, 2011). In 
this region, an abundance of tree-ring based reconstructions exists for 
streamflow (e.g. Meko et al., 2007; Woodhouse et al., 2012, 2006), 
precipitation (e.g. D’Arrigo and Jacoby, 1991), and Palmer Drought 
Severity Index (PDSI) (e.g. Cook et al., 2004). These tree-ring re
constructions show that past “megadroughts” were of a duration and 
severity unlike any experienced in our limited window of modern sci
entific record keeping (Woodhouse and Overpeck, 1998). Climate 

modeling predicts intensified droughts in the semi-arid western U.S. due 
to an increase in temperature and decrease in precipitation (Jones and 
Gutzler, 2016), although precipitation trends are prone to higher un
certainty (Deser et al., 2014). In recent decades, warming alone has 
exacerbated moisture deficits, increasing the severity of droughts and 
impacting streamflow on the Upper Colorado River (Udall and Over
peck, 2017; Woodhouse et al., 2016) and the Rio Grande (Chavarria and 
Gutzler, 2018; Lehner et al., 2017). With mid-range climate change 
scenarios predicting a 2.7 ◦C increase in average annual temperature by 
2100 for the semi-arid western U.S. (Gonzalez et al., 2018) the impacts 
on water supply from warming are likely to continue. Revealing how 
temperature interacted with droughts over past centuries to millennia 
using tree-ring based climate reconstructions could improve our 
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understanding of how temperatures may influence drought severity in a 
warmer future. 

Despite the potential influence of temperature on past droughts, 
there is a deficit in annual tree-ring based temperature reconstructions 
for the region. A recent survey of Common Era proxy records found only 
ten temperature-sensitive tree-ring chronologies in the states of Arizona, 
Colorado, New Mexico, and Utah (Emile-Geay et al., 2017). Efforts to 
produce a comprehensive regional temperature reconstruction in the 
semi-arid western U.S. have been limited due to a lack of 
temperature-sensitive tree-ring chronologies, and most recently, a lack 
of updated chronologies. Fritts and Lough (1985) produced the first 
tree-ring based temperature reconstruction for this region, expanding on 
previous work that produced a relative index of past temperature vari
ation (Blasing and Fritts, 1976; LaMarche and Stockton, 1974). Briffa 
et al. (1992) developed the first regional latewood density reconstruc
tion of temperature for a gridded network that included the semi-arid 
western U.S. In the years since, several spatially limited temperature 
reconstructions have been produced for the Sierra Nevada (Graumlich, 
1993), the southern Colorado Plateau (Salzer and Kipfmueller, 2005), 
the Great Basin (Salzer et al., 2009), and the Southern Rocky Mountains 
(Berkelhammer and Stott, 2012). Relative to the number of regionally 
developed precipitation and moisture reconstructions, temperature re
constructions are far outnumbered. With a limited set of temperature 
reconstructions available, a comparison between past droughts and 
temperature remains difficult. 

Rocky Mountain bristlecone pine (Pinus aristata Engelm.) may pro
vide an additional resource for this temperature reconstruction deficit. 
The related Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) has 
been widely studied due to its 5000-year lifespan (Schulman, 1954), 
potential for climate reconstruction (Salzer et al., 2009), and preserva
tion of remnant wood dating to the early Holocene (Salzer et al., 2019). 
While P. longaeva has been used for both annual precipitation (Knight 
et al., 2010) and temperature reconstructions (Salzer et al., 2009), 
research has indicated that inter-mixture of both precipitation and 
temperature signals is common within a P. longaeva sampling site due to 
topographic microclimates (Bunn et al., 2011) and proximity to upper 
tree line (Salzer et al., 2014b). Disentangling the mixed signals has 
involved cluster analysis (Tran et al., 2017), experimental temperature 
sensors (Bruening et al., 2017), and simulated tree-ring proxy growth 
models (Bunn et al., 2018). 

Despite its extreme longevity (over 2500 years (Brunstein and 
Yamaguchi, 1992)) and natural habitat within major Southwest head
waters (i.e. Rio Grande and Arkansas River), P. aristata has not received 
the same level of investigation for climate sensitivity as P. longaeva. 
Limited research exists for P. aristata (Brunstein and Yamaguchi, 1992; 
Ferguson and Graybill, 1983; Krebs, 1973; LaMarche and Stockton, 
1974), with only two precipitation proxy records (Routson et al., 2011; 
Woodhouse et al., 2011) and one temperature reconstruction (Salzer 
and Kipfmueller, 2005). Until now, no study has systematically exam
ined the potential for P. aristata as a proxy for both temperature and 

Fig. 1. Left panel: Locations of P. aristata sampling sites used in this study, within the estimated range of P. aristata (Rehfeldt et al., 2006) and the Southern Rockies 
Ecoregion (Wiken et al., 2011). Location three letter codes correspond to sampling site codes in Table 1. Upper right panel: Regions used for climate/tree-growth 
correlations. The climate response region (solid line) shows the area used to generate correlation field maps while the dashed line box represents a reduced response 
region used to calculate correlations between tree growth and climate at each PRISM grid point within this box. Lower right panel: >500 year-old P. aristata near 
upper tree line at the Hermit Lake collection site with narrow strip bark growth and reduced crown canopy. 
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moisture. A better understanding of the characteristics of P. aristata 
climate signals may improve this species’ potential as a multi-millennia 
climate record, providing new regional temperature reconstructions and 
improving our understanding of past hydroclimates. 

We undertook an evaluation of P. aristata chronologies across the 
Southern Rocky Mountains of Colorado and New Mexico (Fig. 1) to 
assess the variable response to climate between and within chronology 
sites. We used ten new and previously collected ring-width chronologies 
to answer the following questions:  

1 What do the regional set of chronologies tell us about the P. aristata 
response to climate, and how it varies by location and site 
characteristics?  

2 Within each sampling site, is the climate sensitivity consistent among 
trees that make up the site chronology or is there intra-site variability 
as documented in previous P. longaeva studies? 

3 What is the potential for developing long moisture and/or temper
ature reconstructions from this set of data? 

To isolate the dominant patterns of growth variability from the ring- 
width datasets, we used empirical orthogonal function (EOF, Pre
isendorfer and Mobley, 1988) analysis at both the chronology and the 
individual tree scales. We also used a modified form of hierarchical 
cluster analysis (Kipfmueller and Salzer, 2010) on a matrix of on-site 
correlations between the individual samples and the local climate to 
isolate a third set of tree-growth patterns. Following the isolation of 
growth signals, we constructed time series and correlated them with a 
regional gridded climate dataset to assess the relationship between 
P. aristata tree-ring growth patterns and climate. Finally, we evaluated 
the potential for these tree-ring growth data to be used in climate 
reconstructions. 

2. Material and methods 

2.1. Study area 

This investigation is set in the Southern Rocky Mountains (Southern 
Rockies) of the continental United States. The Southern Rockies ecor
egion is characterized by multiple ranges of high, steep mountains with 
peaks regularly exceeding 4000 m surrounded by valleys dropping 
below 2500 m (Wiken et al., 2011). This dramatic variation in topog
raphy controls all aspects of the regional climate, including temperature 
and precipitation. Temperature decreases with elevation, but local 
topography plays a role as well. Closed valleys surrounded by high peaks 
are susceptible to temperature inversions during the winter, with dense 
cold air sinking to the valley bottoms and reaching temperatures below 
−50 ◦C (Doesken et al., 2003). These inversions also occur at smaller 
spatial scales and diurnally. Precipitation is broadly controlled by 
elevation with annual totals ranging from 255 mm at lower elevation 
sites to 1750 mm on high mountains (Wiken et al., 2011). In addition, 
the steep topography produces rain shadow effects throughout the 
Southern Rockies, resulting in sharp contrasts in precipitation due to 
orographic effects. The majority of annual precipitation falls as snow 
(Wiken et al., 2011), resulting in a snowpack reservoir that is the pri
mary source of streamflow for the numerous rivers originating in the 
Southern Rockies. The depth of snowpack is controlled by elevation and 
aspect, with high north-facing locations maintaining the deepest snow 
due to lower temperatures and reduced solar radiation. The driest sea
son in the study area is the spring interstitial period between the end of 
frontal storms in April and early May and beginning of summer thun
derstorms in July. Except for this dry period, no other distinct wet or dry 
seasons occur. 

The natural distribution of Pinus aristata coincides with the southern 
half of the Southern Rockies ecoregion, extending from central and 
southern Colorado into northern New Mexico (Fig. 1) (Bailey, 1970). 
There is an additional isolated stand of P. aristata on the San Francisco 

Peaks in northern Arizona. P. aristata is primarily found on the xeric, 
south-facing aspect of mountains between 2700 and 3700 m, in loca
tions not occupied by Engelmann spruce, subalpine fir, or aspen (Baker, 
1992; Schoettle and Coop, 2017). P. aristata habitat coincides with the 
headwaters of the Rio Grande, Arkansas, and South Platte Rivers, but is 
rarely found west of the North American continental divide or north of 
40 ◦N (Gilbert et al., 2019). P. aristata and P. longaeva have no range 
overlap, with the division largely demarcated by the Colorado River 
(Bailey, 1970). For this investigation we focused on the Colorado and 
New Mexico range of P. aristata (36.8 ◦N-39.2 ◦N, 105 ◦W-106 ◦W), 
excluding the isolated stand in Arizona. 

2.2. Data 

2.2.1. Tree-ring data 
Ten P. aristata collections were used in this study — five newly 

sampled, four previously developed, and one an update of a previous 
collection (Table 1). The previously developed collections were selected 
from our inventory of all published and unpublished P. aristata ring- 
width data. From this inventory we selected the collections with avail
able ring-width measurements, low incidence of dating errors (as 
determined by COFECHA)(Holmes, 1983), and end dates of 2000 or 
later to maximize the timespan for the climate response analysis. This 
narrowed down the previous set of collections to four sites: Black 
Mountain (BLK) (Brunstein and Yamaguchi, 1992; Miller, 2014; 
Woodhouse et al., 2011), Summitville (SMV) (Routson et al., 2011), 
Sheep Mountain (SHM) (Woodhouse et al., 2011), and Windy Peak 
(WPK) (Woodhouse unpublished). One new collection in this study, 
Hermit Lake (HER), was an update of a previously collected chronology 
(LaMarche and Stockton, 1974). Ring-width data for the five previously 
collected sites (including the original HER time series), were obtained 
from the International Tree-Ring Data Bank (ITRDB) and from the un
published collection of one of the authors. The new P. aristata collection 
sites span the length of the Sangre de Cristo Mountains from central 
Colorado to northern New Mexico. The five new sample collections 
were: Antora Peak East (APE), Little Costilla Peak - High (LCH), Little 
Costilla Peak - Low (LCL), North of Heart Lake (NHL), and Zapata Trail 
Summit (ZTS) (Fig. 1, Table 1). These sites were identified using location 
data from previous genetic sampling research (Schoettle and Coop, 
2017), the Arizona - New Mexico Chapter of the SEINet botanical re
pository (Gilbert et al., 2019), and examination of Google Earth images. 
The ten sites range in elevation from 2900 m at LCL to 3680 m at HER. 
The majority of sites (n = 7) were located on south-aspect slopes, with 
SHM and LCH found on east-aspect slopes, and LCL sampled on a valley 
floor. 

During the summers of 2018 and 2019, we collected P. aristata 
increment cores from the five new sites and one updated site (Table 1). 
We selected the oldest trees for sampling based on a set of physical 
characteristics that indicate extreme age (strip-bark growth, reduced 
crown, presence of dead pith spike) (Brunstein, 2006). At minimum, two 
cores were collected from each tree with an increment borer, taken at 
breast height (1.3 m), with at least 15 trees sampled per site. At five of 
the six sites (APE, HER, LCH, NHL, and ZTS) trees were sampled at or 
near the upper tree line limit of growth, but with care to exclude trees 
with krumholtz morphology that could distort climate sensitivity and 
reduce cross-dating capacity. The cores were mounted and prepared in 
accordance with standard dendrochronological procedure (Stokes and 
Smiley, 1968), the cross-dated ring-widths were measured with a Vel
mex measuring stage to a precision of 0.001 mm, and the measurement 
data was stored using the Tellervo archiving software (Brewer, 2014). 
The years assigned to each ring-width measurement were verified with 
the COFECHA software (Holmes, 1983). 

Because the new samples in this study were from living trees, we 
made an effort to select only living trees from the previous collections. In 
cases where the sample type was unclear, we relied on the sample code if 
it indicated a remnant or a living tree. All ring-width measurements 

W.L. Tintor and C.A. Woodhouse                                                                                                                                                                                                           



Dendrochronologia 68 (2021) 125846

4

from these screened collections were then stored in the Tellervo data
base. Total number of ring-width samples and number of trees sampled 
for the sets of collections, along with mean age and chronology length, 
are shown in Table 1. 

2.2.2. Climate data 
PRISM monthly gridded climate data (Daly et al., 1994) were used 

for correlation analysis, taking advantage of the spatial extent and long 
period of record of the PRISM dataset. The algorithm for the gridded 
PRISM data includes adjustments for orographic effects on temperature 
and precipitation, taking into account elevation, slope, and aspect to 
simulate topographically induced variability (Daly et al., 1994). PRISM 
monthly total precipitation, monthly average maximum temperature, 
and monthly average minimum temperature from the period 1895–2018 
were downloaded at the 0.25◦ resolution from the KNMI Climate Ex
plorer (Trouet and Van Oldenborgh, 2013). The PRISM data were 
cropped to an area extending from 30 ◦N to 46 ◦N to 114 ◦W to 98 ◦W, 
centered on the study area, for use in correlation analysis (Fig. 1, climate 
response region). 

2.3. Methods 

2.3.1. Tree-ring time series development 
Our goal was to investigate the potential for multiple signals both 

between and within collection sites, therefore we developed two sepa
rate tree-ring datasets. The first dataset (“CHRON”) was a set of chro
nologies from each of the ten sites used to investigate growth patterns 
between sampling sites. The second dataset (“TREE”) was a collection of 
88 individual tree-ring series used for analysis of common tree-growth 
patterns between trees irrespective of the sampling location. Prior to 
developing the two datasets, we processed the data and removed juve
nile growth. If multiple core samples were collected from the same tree, 
we averaged together the ring-width values to produce a single time 
series for each tree (n = 188) (Table 1). To remove juvenile growth, we 
identified the maximum common interval between all ten sites 
(1826–2007). We removed any ring-width series with evident juvenile 
growth over this period, resulting in the removal of ten ring-width se
ries. We used the remaining 178 ring-width series to construct the 
CHRON and TREE datasets. 

The ten chronologies in the CHRON dataset were developed as fol
lows: We evaluated subsample signal strength (SSS) prior to chronology 
construction to identify the periods of time with a sufficient number of 

tree-ring width measurements to produce a strong common signal for 
each chronology (Buras, 2017). A cutoff value of 0.80 for SSS was used 
to determine which time periods to select from each chronology (Wigley 
et al., 1984). This produced a common interval between the ten chro
nologies of 1826–2007 (n = 182 years). The ring-width series for each 
site were truncated to match this period and standardized using the 
series mean. The standardized ring-width series were then combined 
into a chronology using the robust bi-weight mean in the R package dplR 
(Bunn, 2008; Cook et al., 1990). Mean-value standardization was used as 
it preserves potential low-frequency signals present in the measurements 
(Kipfmueller and Salzer, 2010). More complex detrending methods were 
not used for two reasons. First, almost all series used represented the last 
two centuries of growth in very slow-growing, long-lived trees. The few 
samples with possible juvenile growth during the period of chronology 
construction were deleted, removing the need to account for the influ
ence of age on ring-width. Second, P. aristata grows in open stands in 
remote, undisturbed locations and has never been commercially har
vested; with little to no exogenous disturbance, any low-frequency 
variability is assumed to be related to climate, and of interest to this 
study. The consistently slow growth, lack of exponential growth curve 
and tree-level decadal variability that merit this detrending approach 
are illustrated in Figure S1 in the supplemental materials. 

The TREE dataset was developed as follows: We started with the 178 
individual trees used to construct the CHRON dataset. Next, we screened 
for the trees with continuous data over the same time period as the 
CHRON dataset (1826–2007). A total of 88 time series met these criteria 
and were selected for use in the TREE dataset. They were truncated to 
the common interval of 1895–2007 and detrended by their mean-value 
to standardize the dataset prior to analysis. The number of trees per 
sampling site varied from three at HER to 16 at APE. 

2.3.2. Determining dominant modes of tree-growth variability with EOF 
analysis 

EOF analysis was used to isolate the dominant patterns of variability 
in the CHRON and TREE time series datasets, and then to evaluate which 
sites or set of trees contributed to the primary patterns of variability. The 
R program “prcomp” ran EOF analysis using SVD (singular value 
decomposition). A covariance matrix of the tree-ring data was used in 
the EOF calculation because all tree-ring data were measured in equiv
alent units and the mean-value detrending applied to the time series 
reduced the potential for a single series with excess variance to dominate 
the EOF results (Overland and Preisendorfer, 1982). Running an EOF 

Table 1 
The 10 Pinus aristata tree-ring collections used in this study. Site names and the site code abbreviations used in the manuscript are listed below, along with the elevation 
and geographic coordinates for the sampling locations. Total samples collected (i.e., cores taken with increment corer) and the number of trees sampled at each 
location are also included.  

Site Name Site 
Code 

Elev. Longitude Latitude Samples 
Collected 

# of Trees 
Sampled 

Chronology Time Period (SSS > 
0.80) 

Mean Tree 
Age 

New collections 
Antora Peak East APE 3600m −106.200 38.327 44 20 1513−2017 423 
Little Costilla Peak 

High 
LCH 3600m −105.243 36.784 54 21 1700−2017 249 

Little Costilla Peak 
Low 

LCL 2900m −105.223 36.823 40 19 1826−2017 193 

North of Heart Lake NHL 3550m −105.450 36.792 40 16 1313−2017 553 
Zapata Trail Summit ZTS 3600m −105.486 37.647 45 17 1726−2017 214  

Update of previous collection 
Hermit Lake HER 3680m −105.642 38.096 59 36 1394−2017 419  

Previous collections 
Black Mountain BLK 3350m −105.689 38.713 31 17 848−2012 901 
Sheep Mountain SHM 3475m −106.103 39.201 37 19 1495−2007 526 
Summitville SMV 3500m −106.632 37.438 13 12 1111−2009 718 
Windy Mountain 

(Peak) 
WPK 3650m −106.408 37.478 18 11 1136−2007 501 

Collection Totals 381 188    
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analysis decomposes the covariance matrix into eigenvectors and their 
corresponding eigenvalues. The eigenvectors (also called “loadings”) are 
orthogonal (uncorrelated) and can be multiplied with the original 
dataset to produce a set of time series (Anchukaitis and Tierney, 2013). 
Each of the time series (or “scores”) corresponds to a mode of variance, 
which, in this study, represents a particular pattern of tree growth over 
time. However, the forced orthogonality of the eigenvectors produced 
results that may not correspond with physical realities (Richman, 1986). 
To improve the interpretability of the loadings, a rotation procedure was 
applied to the EOF modes. 

Before applying rotation to the original EOF modes, we determined 
the significant number of eigenvalues to retain using a modified N-rule 
calculation (Anchukaitis and Tierney, 2013; Preisendorfer and Mobley, 
1988). This process utilizes a Monte Carlo approach, creating 10000 
synthetic white noise (Gaussian) and red noise (lag-1 autocorrelation) 
datasets, applying EOF analysis to the synthetic data, then determining 
if the original EOF eigenvalues were greater in value than the 95th 
percentile of the synthetic data eigenvalues. If the original EOF eigen
values are larger than the both the white and red noise data, they are 
retained. A varimax orthogonal rotation was then applied to the retained 
original EOF eigenvalues. This process produced the rotated EOF scores 
for the CHRON dataset, values we used in the climate response analysis. 

We ran a modified form of EOF analysis on the TREE dataset to 
counter the influence of an uneven sample size between collection sites 
(varying from three to 16 trees). First, we applied the EOF analysis to the 
individual tree-growth series at each site (ten runs, one per site). The 
modified N-rule was used to determine the number of EOF modes from 
each collection site to retain (Table 3). The retained EOF modes were 
converted into unrotated EOF scores. EOF analysis was applied a second 
time to the set of unrotated EOF scores producing a final set of EOF 
modes. A varimax orthogonal rotation was applied to the second set of 
EOF modes producing rotated EOF scores. This second set of TREE EOF 
scores was used in our climate response analysis. The two-step process 
reduced the influence of sample number by converting the ring-width 
data into the dominant modes of growth at each site. Whereas the 
CHRON EOF process highlighted a single growth signal per site (i.e., 
chronology), the TREE EOF process allowed sites with multiple growth 
signals to have both growth patterns represented in the EOF analysis. 

2.3.3. Determining modes of variability based on tree-growth response to 
climate 

We utilized a second process to identify unique modes of tree-growth 
variability at the tree level based on methods used in a previous study of 
five needle pines (Kipfmueller and Salzer, 2010). Following their 
approach, we first investigated the correlation between local climate 
and each tree-growth time series, then we grouped the trees based on the 
types of correlations to produce clusters with similar climate responses. 
We then combined the tree-growth series in each cluster to produce a 
single tree-ring time series corresponding to the climate response of each 
tree cluster. This time series was used to evaluate the climate response in 
the same manner as the EOF scores. We refer to this as the “Tree-Climate 
Method.” 

In this approach, we took the same set of 178 tree-ring time series 
used to produce the CHRON and TREE datasets and selected all trees 
with a complete period of record from 1895–2007 (a total of 119 trees). 
We chose the 1895 start date to match the period of record for PRISM 
data. We truncated the remaining 119 series to the 1895–2007 period 
and detrended by their mean-value as done with the CHRON and TREE 
datasets. Next, we extracted the PRISM monthly precipitation, minimum 
temperature, and maximum temperature values for the data pixel 
located over each chronology location. The monthly climate data were 
averaged into three-month seasonal time series (previous-Fall, Winter, 
Spring, Summer, and Fall) in the same manner as Kipfmueller and Salzer 
(2010), but with additional previous-Spring and previous-Summer sea
sons. Each tree was correlated with the seasonal climate record at the 
sampling location and the resulting correlations were combined into a 

matrix of correlations. If a tree had no significant correlations with any 
climate parameter, it was dropped from the matrix, reducing the final 
number of trees used for the cluster analysis. The final Tree-Climate 
dataset used for cluster analysis consisted of 114 trees. We calculated 
the clusters from the matrix using hierarchical cluster analysis with 
Euclidean distance matrices and Ward’s method (Ward, 1963). The 
stability of the clusters was determined with bootstrapped Jaccard 
indices calculated by the R function “clusterboot” (Hennig, 2007). The 
number of clusters to keep was determined iteratively until the average 
of all the Jaccard indices was highest. Once a stable number of clusters 
was determined, the tree-ring series within each cluster were combined 
using a biweight robust mean to produce a single time series (Cook et al., 
1990). 

2.3.4. Tree-growth/Climate analysis 
We assessed the relationship between the tree-growth time series 

(from both chronology-level and tree-level analyses) and the PRISM 
gridded climate data with Pearson correlation analysis (significance 
assessed at p < 0.05). Correlations were calculated for each climate 
parameter (precipitation, maximum temperature, minimum tempera
ture) and tree-growth time series, from the April of the previous year to 
the end of current year growing season in September (n = 18 months). 
The correlations for months in the year prior to the growing season were 
evaluated because of the high lag-1 autocorrelation present in P. aristata 
(LaMarche and Stockton, 1974), which may result in a growth response 
to climate variation in the years after the initial climate perturbation. All 
correlations were calculated for the time period 1895–2007 as this is the 
common time-period between the PRISM data and all CHRON EOF, 
TREE EOF, and Tree-Climate time series. Because the sign of EOF ei
genvectors is arbitrary, and to facilitate comparisons, we reversed the 
sign of one EOF time series prior to the correlation calculations. The 
score for this time series had a strong negative correlation with the three 
Tree-Climate time series, which are representative of the original di
rection of the tree response to climate. Therefore, it was reversed to 
match the directionality of the Tree-Climate time series. 

Because of the large number of correlations being run between tree- 
growth time series and the climate records, a high potential for spurious 
false positive correlations (type I errors) between the proxy record and 
climate data exists (Hu et al., 2017). To adjust for the high test multi
plicity and concurrent increase in type 1 errors, the False Discover Rate 
(FDR) procedure was applied (Benjamini and Hochberg, 1995). We ran 
FDR using the “p.adjust” function in R with a q-value set to 0.05, the 
same as our p-value threshold. In addition to the corrections for high test 
multiplicity, adjustments were made to account for serial correlation (i. 
e. autocorrelation) (Hu et al., 2017). To correct for high serial correla
tion an adjustment equation as defined by Dawdy and Matalas (1964) 
was used to calculate effective degrees of freedom υeff . This adjustment 
increases the corresponding p-value in proportion to the increase in 
autocorrelation, reducing the potential for a type I errors. The FDR and 
υeff adjustments were applied to all calculations used in the climate 
response correlations, while only the υeff adjustment was applied to the 
seasonal climate relationships used in the Tree-Climate Method. FDR 
was unsuited for the initial Tree-Climate Method step as the correlations 
were single instance (one tree-ring time series and one climate time 
series), therefore reducing the need to assess potential false positives. 

The climate response calculations were run a second time with the 
low-frequency variability removed prior to correlation. We applied a 30- 
year Butterworth high-pass filter to both the climate time series and the 
tree-growth time series using the pass.filt function in the R package DplR 
(Bunn, 2008). Removing the low-frequency variability allows for com
parison of the high-frequency variances in the resulting time series. The 
loss in correlation strength following the application of a high-pass filter 
will highlight time series where the low-frequency variability was an 
important factor in correlation. Both the original and high-pass filtered 
correlation calculations were used to analyze the climate sensitivity of 
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the tree-growth time series. 
From the climate response calculations, we produced a regional 

correlation map (Fig. 1, climate response region) for each combination 
of climate parameter, month, tree-growth time series, and for both the 
original and high-pass filtered series. These maps provide a broad 
overview of climate response for each time series. Next, we extracted the 
correlation values from a smaller region located directly over the 
P. aristata sampling sites (36 ◦N- 40 ◦N by 108 ◦W- 104 ◦W) (Fig. 1, 
reduced climate response region). From this reduced region, we pro
duced a jitter plot of all correlations for the CHRON and TREE EOF time 
series and the Tree-Climate time series. These plots show the correlation 
(for p < 0.05) of each tree-growth time series with each monthly climate 
variable. They also show the variation in correlation strength whether 
the data was filtered or not prior to correlation. This smaller subset was 
used to better represent the local climate. 

3. Results 

3.1. Time series produced from tree-growth patterns and tree-growth 
climate signals 

The EOF analysis based on the ten chronologies resulted in two 
primary modes of variability (Table 2). The first CHRON EOF (C-1), 
accounting for 52 % of the total variance, is composed primarily of 
loadings from LCH, ZTS, NHL, APE, WPK, and HER. These six sites are all 
located at the upper tree line. The second CHRON EOF (C-2), accounting 
for 23 % of the total variance, is characterized by the two lower eleva
tion sites, BLK and LCL, and one upper elevation site, WPK. Two sites, 
SHM, and SMV, contribute to both EOF modes, with small positive 
loadings for each mode. 

The first step of the TREE EOF analysis, on tree-growth series within 
each of the 10 sites, yielded either one or two EOFs per site (Table 3). 
Seven sites had only one dominant EOF mode of growth, and three sites, 
BLK, SHM, and SMV had two significant EOF modes within the collec
tion site. These EOFs, 13 in all, were then used in the second round of 
TREE EOF analysis. This yielded two statistically significant TREE EOF 
modes (T-1 and T-2) representing 41 % and 21 % of the explained 
variance, respectively (Table 4). 

The first TREE EOF mode (T-1) was characterized by very high 
loadings from eight EOF time series, including most of the higher 
elevation sites. The second TREE EOF mode (T-2) had high loadings 
from five of the series, including the two lowest elevations sites and 
WPK. These loadings are similar to those in the CHRON EOF results, but 
the difference is found at the three sites with two EOF modes each which 
were split between T-1 and T-2. The weakness of the SHM and SMV 
CHRON loadings contrasts with the strong loadings of SHM-1 and SMV-1 
into T-2 and SHM-2 and SMV-2 into T-1. This suggests that a single 
chronology at these sites inadvertently blends two contrasting growth 
signals producing a weaker overall growth signal. 

The third approach for examining tree-growth patterns (Tree- 
Climate or TC) was based on cluster analysis of 114 trees from the ten 

sampling sites and their responses to local climate grid points. This 
analysis resulted in five groupings (TC-1, TC-2, TC-3, TC-4, and TC-5) 
with respective Jaccard indices of 0.73, 0.86, 0.48, 0.48, and 0.77. 
Because Jaccard indices below 0.6 are unstable and do not indicate 
significant patterns (Hennig, 2007), we removed TC-3 and TC-4 (and the 
37 trees associated with them). TC-1 consisted of trees from nine of the 
ten sampling sites, particularly NHL, ZTS, and LCH. TC-2 was dominated 
by trees at BLK, while TC-5 was made up of trees from six of the ten 
sampling sites (Table 5). BLK was the only site in which all samples fell 
into one cluster. 

The associations between the seven tree-growth series (two CHRON 
EOFs, two TREE EOFS, three Tree-Climate clusters) were examined for 
the common period, 1895–2007 (Fig. 2). The EOF time series pairs (C-1/ 
C-2 and T-1/T-2) had weak correlations with one another, a logical 

Table 2 
The CHRON EOF loadings from each sampling site for EOF’s C-1 and C-2.  

Site Code C-1 EOF Loadings C-2 EOF Loadings 

APE 0.232 0.015 
BLK −0.022 0.248 
HER 0.208 0.012 
LCH 0.313 −0.021 
LCL −0.050 0.254 
NHL 0.238 0.061 
SHM 0.051 0.060 
SMV 0.082 0.153 
WPK 0.217 0.225 
ZTS 0.280 0.041 
Explained Variance 52.44% 23.41%  

Table 3 
The number of trees per sampling site used in first EOF analysis and the number 
of significant EOF modes retained per sampling site for use in Step 2 of the TREE 
EOF analysis. The explained variance for each site’s EOF mode is also included.  

Site 
Code 

# of 
Trees 

# of Significant 
EOF Modes 

Explained 
Variance EOF-1 

Explained 
Variance EOF-2 

APE 16 1 58.60% – 
BLK 14 2 58.14% 12.74 % 
HER 3 1 55.70% – 
LCH 10 1 64.51% – 
LCL 4 1 69.66% – 
NHL 12 1 57.80% – 
SHM 8 2 40.55% 23.55 % 
SMV 10 2 50.65% 14.59 % 
WPK 5 1 66.72% – 
ZTS 6 1 53.26% – 
Total 88 13    

Table 4 
The loadings for TREE EOF time series T-1 and T-2, using the EOF Scores from 
TREE EOF Step 1 (see Table 3).  

Step 1 TREE EOF Time Series T-1 EOF Loadings T-2 EOF Loadings 

APE 0.902 0.004 
BLK-1 0.014 0.862 
BLK-2 0.827 −0.142 
HER 0.384 0.220 
LCH 0.928 −0.100 
LCL −0.175 0.802 
NHL 0.841 0.269 
SHM-1 −0.110 0.735 
SHM-2 0.671 −0.094 
SMV-1 0.264 0.618 
SMV-2 0.689 −0.081 
WPK 0.573 0.540 
ZTS 0.844 0.233 
Explained Variance 41.27% 21.11%  

Table 5 
The number of trees used in each Tree-Climate cluster shown by sampling site. 
The number of total trees per side does not match the number of trees used 
because TC-3 and TC-4 were dropped from the analysis prior to correlation with 
climate.  

Site Code Total # of Trees # of Trees Used TC-1 TC-2 TC-5 

APE 16 8 3 5 0 
BLK 15 12 0 12 0 
HER 5 5 3 0 2 
LCH 14 11 7 0 4 
LCL 9 5 2 3 0 
NHL 15 12 9 0 3 
SHM 8 7 3 2 2 
SMV 10 3 2 1 0 
WPK 7 2 1 0 1 
ZTS 15 12 8 2 2 
Total Trees 114 77 38 25 14  
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result as EOF modes should be orthogonal and uncorrelated. The re
sidual correlations that do exist between EOF time series pairs are a 
result of the shortened period for correlation (1895–2007) relative to the 
full time period for the EOF analysis (1826–2007). There are broad 
similarities between the pairs of TREE EOFs and CHRON EOFs even 
though the TREE EOF is an effort to optimize the common signal by 
identifying within-site growth signals. For example, C-1 has a very high 
correlation with T-1 (0.88), while C-2 has a very high correlation with T- 
2 (0.96), producing two groups of time series with similar variability. 
The strong correlation between the two EOF pairs increases the utility of 
having the Tree-Climate method as an alternate mode of tree-growth 
analysis. The Tree-Climate time series TC-1 and TC-5 correlate 
strongly with the first group (C-1/T-1), while TC-2 correlates with the 
second group (C-2/T-2). However, these correlations are not as strong as 
the intra-EOF correlations. The TC time series were also all significantly 
correlated with one another, but TC-1 and TC-5 had the strongest cor
relation of 0.78. 

3.2. Climate response 

Climate response results indicate two main types of tree-growth/ 
climate relationships consistent among the three sets of tree-growth 
patterns analyses. The first relationship, found in all seven time series, 
shows a negative June maximum temperature response. Six of these 
seven series (all but T-1) also show a positive June precipitation 
response. The second, and less common, climate response relationship 
was a positive correlation with minimum temperature during August 
and September at three sites (C-1, T-1, and TC-1). In the following sec
tions we will discuss the two climate response patterns in more detail, 
including the influence of the high-pass filter on these relationships and 
the associated spatial patterns. 

3.2.1. June correlations 
Five of the seven time series show a significant correlation with both 

June precipitation and maximum temperature (C-2, T-2, TC-1, TC-2, and 
TC-5) (Figs. 3 and 4) in the original and high-pass filtered series, sug
gesting a robust June drought stress response to warm, dry conditions in 

that month. One additional series (C-1) is correlated with June precip
itation, but does not show any correlation with June maximum tem
perature prior to high-pass filtering, and one (T-1) is not correlated June 
precipitation or with June maximum temperature prior to high-pass 
filtering. The removal of low-frequency variability in the C-1 and T-1 
time series exposes an underlying high-frequency negative response to 
June temperature in these growth series (Figs. 3 and 4). 

T-2 has the strongest single negative correlation with June maximum 
temperature (r = -0.62), and the strongest single positive correlation 
with June precipitation (r = 0.47) (Fig. 5A and Fig. 5C, respectively), 
with weaker but still significant correlations after the 30-yr high-pass 
filtering (Fig. 5B and Fig. 5D, respectively). The C-2 series prior to 
high-pass filtering also has very strong negative June maximum tem
perature and positive June precipitation correlations of r = -0.58 and r =
0.44 respectively. Several of the tree-growth series show positive pre
cipitation/negative maximum temperature responses with other 
months; however, none of these correlations are found consistently 
across all seven series. Negative maximum temperature correlations 
during the July of the previous year are the most prevalent of these, 
occurring with original correlations in three of the seven time series, and 
with six of the seven time series after the high-pass filter is applied. 

The spatial patterns of the June temperature correlations are similar 
for the seven tree-growth series, especially after application of the high- 
pass filter (Fig. 6). The highest correlations are all centered directly over 
the study region, weakening with radial distance from this region. Tree- 
growth associations with June precipitation are somewhat more vari
able. All but T-1 show correlations with the high-pass filtered tree- 
growth series that extend in a north-south pattern coinciding with the 
Rocky Mountains; however, the location of strongest precipitation cor
relation varies between the series (Fig. 7). The strongest June precipi
tation correlation is centered over the study area in the C-2, T-2, and TC- 
2 series, while it is centered over the northern Rocky Mountains in C-1, 
TC-1, and TC-5. The position of highest correlation is more stable with 
the June maximum temperature correlations and shifts in spatial cor
relation do not occur to the same degree as the precipitation climate 
correlations. 

3.2.2. Minimum temperature correlations 
The second main tree-growth/climate pattern is an association be

tween tree growth and minimum temperatures. Three time series (C-1, 
T-1, and TC-1) feature significant positive correlations with minimum 
temperatures during the months of August and September, prior to 
application of the 30-yr high pass filter (Figs. 3 and 4). Two of these also 
have weak June moisture stress signals. The application of the high-pass 
filter removes any significant minimum temperature correlations in all 
three series. This is evident in the correlation maps for August and 
September shown for T-1 (Fig. 8). The original (un-filtered) T-1 has the 
strongest correlation with minimum temperature in August and 
September, with maximum r-values of 0.49 and 0.45 respectively, but 
after application of the 30-year high-pass filter the correlation map 
shows no significant correlations remain. The original series show a 
concurrent increase in both August minimum temperatures and tree- 
ring widths over the 20th century (Fig. 5E). Once the high-pass filter 
is applied (Fig. 5F), the trend is removed, and the correlation drops to 
0.22, with a significance level of p = 0.010 after FDR and υeff adjust
ments are applied. 

4. Discussion 

The analyses described here are the first undertaken to investigate 
the climate information in P. aristata tree growth across much of its 
range. The tree-growth/climate patterns are complex, similar to the 
results found by Bunn et al. (2018) for Pinus longaeva in the Great Basin. 
As with P. longaeva, the results from our study indicate that different 
growth responses occur within a single site, and in certain cases these 
responses indicate differing climate responses. 

Fig. 2. Correlation matrix between all seven time series used in analysis. 
Pearson correlation with a threshold value of 0.05 for analysis. Each correlation 
is for the common period of all seven time series (1895-2007). 
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Our first research question asked whether common tree-growth 
signals were found between the ten P. aristata chronologies, and if so, 
how those signals related to climate variability. The CHRON EOF 
analysis yielded two time series (C-1 and C-2), together accounting for 
76 % of the common variance among the ten chronologies. This result 
indicates two common tree-growth signals, one for trees at higher ele
vations (C-1) and one for trees at lower elevations (C-2). The C-1 series 
primarily shows a positive association with late summer minimum 
temperature while C-2 displays a strong moisture stress signal (positive 
correlation with precipitation and negative with temperature) that is 
particularly strong for June. However, when stripped of low-frequency 
signals using the 30-yr high-pass filter, both modes share a June 
drought stress response. This indicates that while upper elevation trees 
are showing a positive low-frequency response to late summer minimum 
temperatures, when examined on a more annual basis, they display a 
response to June drought conditions that is similar to the lower eleva
tion P. aristata. Spatial patterns of correlations indicate some differences 
in the June drought stress signal, with the strongest June precipitation 
correlation centered over Wyoming for C-1 and over central Colorado, 
and more widespread for C-2 (Fig. 7). The maximum temperature 

correlation patterns are more similar to one another then the drought 
stress signal (Fig. 6). 

Our second question asked whether multiple climate responses may 
exist among trees within a single P. aristata sampling site. This question 
addressed the issue of trees within the same chronology having different 
responses to climate due to microsite conditions. Two approaches were 
taken to investigate this potential problem. First, EOF analysis was 
performed on the individual tree-ring width series at each of the ten 
collection sites, followed by an EOF analysis on the modes produced for 
each site. Second, cluster analysis was performed on the pattern of tree- 
growth/climate correlations for each tree. 

In the first case, an analysis of the two TREE EOF time series (T-1 and 
T-2) indicated a mix of growth signals within several of the P. aristata 
sampling sites. The BLK, SHM, and SMV sampling sites had two signif
icant EOF modes after the first run of TREE EOF analysis (Table 3). The 
two modes from each site fell into either T-1 or T-2 when the second EOF 
analysis was applied (Table 4). BLK-1, SHM-1, and SMV-1 had high 
loadings in T-2 while BLK-2, SHM-2, and SMV-2 had high loadings in T- 
1. The growth patterns of the trees within these three sites are different 
enough to fall into two modes and remain separate in the subsequent 

Fig. 3. Climate responses for the CHRON EOF and TREE EOF tree-growth time series. Correlation map results are compressed into jitter plots. Each cluster of points 
shows the range of Pearson correlations (p < 0.05) for each tree-growth series and monthly precipitation and temperature, from April prior to the growth year to 
September of the growth year. Correlations for the original (no filter) series are shown in black and for the 30-yr high-pass series in orange. 
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EOF analysis. If growth pattern differences are primarily related to 
climate, we would expect the correlations between climate and the two 
TREE time series to reflect the differences. This was the case, with T-1 
containing a positive, late summer correlation with minimum temper
ature and T-2 showing a strong June drought stress signal. These results 
were very similar to C-1 and C-2, respectively, with the same loss of the 
minimum temperature correlation for T-1 after high-pass filtering and 
replacement with a negative association with June (and prior summer) 
maximum temperature. However, the separation of different signals at 
BLK, SHM, and SMV sites appears to have strengthened the signal of the 
T-2 time series producing higher correlations with June precipitation 
and maximum temperature than occurs in C-2. This may indicate the 
mixed signals present at the BLK, SHM, and SMV sites reduced the clarity 
of the growth signal of their respective chronologies and subsequently of 
the CHRON EOF time series. 

The Tree-Climate cluster analysis further suggests the potential for 
trees to have differing climate responses within the same sampling site. 
The three significant Tree-Climate clusters indicate three different tree- 
growth responses may be present within a single sampling site. Two sites 
(SHM and ZTS) have trees in all three clusters, one site (BLK) has trees in 
a single cluster, and the remaining seven sites have trees in two of the 
clusters. The presence of multiple growth patterns again represents the 
presence of multiple climate responses. TC-1 contains a weak late 
summer positive minimum temperature signal similar to C-1 and T-1, 
while TC-2 and TC-5 exhibited a June precipitation and maximum 
temperature correlation similar to C-2 and T-2. Like the previous time 
series, the application of the 30-yr high-pass filter removed the mini
mum temperature signal. 

An examination of the Tree-Climate clusters suggests, that in all cases 
(BLK being the exception), trees within a site may contain differences in 
climate signal that could be related to microsite conditions. These 
microsite differences appear to exist at both low and high elevation 

sampling sites. An examination of the precise location of predominantly 
June drought-stressed trees compared to those with low-frequency 
positive summer temperature response may reveal differences in 
microsite characteristics. The differences in climate responses among 
the three Tree-Climate series are subtle after the low-pass filtering, but 
as with the TREE EOF results, some attention to the climate signal at the 
tree level may help refine the climate information. These results strongly 
suggest that legacy P. aristata collections should be used with care, as 
they may contain trees with a mix of climate signals. 

4.1. Physical mechanisms for climate responses 

The predominant June precipitation/maximum temperature corre
lation with tree growth we observed makes sense considering the 
regional climatology, the timing of tree growth, and tree physiology. 
First it should be noted that June is the driest or second driest month at 
all of sampling sites. June falls between the period of active mid-latitude 
winter storms and the onset of mid-summer moisture in July (Sheppard 
et al., 2002). June precipitation is also inversely correlated with June 
maximum temperature across the study region (Daly et al., 1994). While 
there are no published studies of cambial phenology, or the timing of 
wood formation, for P. aristata, they do exist for P. longaeva (Ziaco et al., 
2016). P. longaeva is the closest genetic relative of P. aristata (Montes 
et al., 2019), therefore they likely share similar physiological traits. 
Analysis of cambial phenology of high altitude (3300 m) P. longaeva 
indicates xylogenesis (or onset of xylem cell formation) begins in early 
June and is continuous until late August at which point the annual 
tree-ring width is completed (Ziaco et al., 2016). The onset of xylo
genesis in P. longaeva is driven by an interaction between soil temper
ature and soil moisture content. Winter snowmelt provides the moisture 
for P. longaeva xylogenesis, but the requirement of sufficient cambial 
warming shifts the onset of tree growth to June when the soil moisture 

Fig. 4. Climate responses for the Tree-Climate tree-growth time series. Correlation map results are compressed into jitter plots. Each cluster of points shows the range 
of Pearson correlations (p < 0.05) for each tree-growth series and monthly precipitation and temperature, from April prior to the growth year to September of the 
growth year. Correlations for the original (no filter) series are shown in black and for the 30-yr high-pass series in orange. 
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derived from the snowpack is most depleted (Ziaco et al., 2016). As 
P. aristata is also found in areas with low June precipitation, we propose 
that the onset of growth for P. aristata is also occurring during this same 
period of water stress. At our study sites, low precipitation and the 
corresponding high maximum temperatures in June could combine to 
increase water stress for P. aristata and delay the onset of xylogenesis, 
resulting in a narrower tree ring. Hughes and Graumlich (1996) also 
found a similar relationship between P. longaeva growth and current 
spring precipitation, further supporting an indication of shared tree 
physiology between P. aristata and P. longaeva. 

Unlike the June precipitation/maximum temperature correlation, 
the positive correlation with minimum temperature in C-1, T-1, and TC- 
1 is a low-frequency signal, not evident after the high-pass filter is 
applied. The correlation with minimum temperature in August and 
September overlaps with the period where xylogenesis is ending (Ziaco 
et al., 2016). Upper tree line is determined primarily by temperature 
controls on the process of xylogenesis, with a threshold growing season 
average temperature controlling the position of tree line (Körner, 2012). 

Trees at or near the tree line, such as our T-1 samples from APE, LCH, 
NHL, and ZTS, exist at the threshold for sufficient growing season 
temperatures, with any large deviation having potentially out-sized ef
fects on growth (Körner, 2012). Therefore, when the months of August 
and September have warmer than average minimum temperatures, this 
could provide the needed thermal energy for these trees to extend the 
period of cellular division and produce a wider tree-ring. Our results 
show a steady increase in T-1 and C-1 ring-widths after the mid 1800s 
(Fig. 5E), corresponding with a steady Northern Hemisphere increase in 
temperature seen in other tree-ring proxies (Wilson et al., 2016). The 
trend may also correspond with increases in annual minimum temper
ature observed across the semi-arid western U.S. (Sambuco et al., 2020; 
Tang and Arnone, 2013), and the recent rapid increase in summer 
minimum temperature seen in New Mexico (Frankson et al., 2019). 

4.2. Potential for climate reconstruction 

Our final question asked what the potential is for developing long 

Fig. 5. Best fitting tree-growth and climate unfiltered time series (A, C, E) and the subsequent results after 30-yr high-pass filtering is applied (B, D, F) over the period 
1895-2007. Climate data includes June precipitation (A, B), June maximum temperature (C, D), and August minimum temperature (E, F). Time series T-2 is used in 
subplots A, B, C and D, while time series T-1 is used in subplots E and F. All climate data (blue) and tree-growth data (red) are standardized to facilitate comparison. 
June maximum temperature data (C/D) are inverted due to the negative correlation between maximum temperature and tree growth. Correlation r-values and 
adjusted p-values for each subplot are included (for interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article). 

W.L. Tintor and C.A. Woodhouse                                                                                                                                                                                                           



Dendrochronologia 68 (2021) 125846

11

moisture and/or temperature reconstructions from this set of data. The 
P. aristata June moisture stress signal (positive precipitation/negative 
maximum temperature correlation) has the greatest potential for long- 
term reconstruction. Two flavors of signal exist across the seven sites. 
The first is robust, found at the low elevation sites (BLK, LCP) and those 
sites with multiple within-site growth patterns (SHM, SMV), and 
maintains its correlation with June climate after high-pass filtering. The 
time series plot of filtered June precipitation and tree growth suggests 
that some decadal-scale variability exists in the precipitation data that is 
reflected in the tree-ring series (Fig. 5), and this should be considered in 
the reconstruction process. The second flavor is weaker, found at high 
elevation sites, and is revealed only after the dominant minimum tem
perature signal is removed using high-pass filtering. Both groups could 

be combined to produce a single regional June moisture reconstruction; 
however, if the reconstruction were to include remnant samples with 
unknown climate correlations, caution would warrant the creation of a 
climate reconstruction using only the lower elevation sites where min
imum temperature is not known to have a positive effect on growth. 

P. aristata also shows potential for temperature reconstruction, but 
further research and sampling are likely required before this can be done 
with confidence. One issue with these trees is the strong reduction in the 
positive correlation with minimum temperature for C-1 and T-1 
following the application of the 30-yr high-pass filtering. This may 
indicate the minimum temperature correlations are mostly due to sim
ilarities in low-frequency, multi-year patterns in temperature, rather 
than year to year variability. A similar issue was encountered during the 

Fig. 6. June 1-month maximum temperature field correlation maps for each of the seven tree-growth series. Each coloured pixel represents a significant Pearson 
correlation (p < 0.05) between the June 1-month maximum temperature at that pixel and the tree-growth series. These maps show the results when the 30-yr high- 
pass filter is applied to both the climate record and tree-growth time series prior to correlation. R-values are broken into intervals of 0.1 for clarity, with map contour 
lines delineating the boundary between each interval. 

Fig. 7. June 1-month precipitation field correlation maps for each of the seven tree-growth series. Each coloured pixel represents a significant Pearson correlation (p 
< 0.05) between the June 1-month precipitation at that pixel and the tree-growth series. These maps show the results when the 30-yr high-pass filter is applied to 
both the climate record and time series prior to correlation. R-values are broken into intervals of 0.1 for clarity, with map contour lines delineating the boundary 
between each interval. 
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production of a temperature reconstruction using P. longaeva (Salzer 
et al., 2014a). In that case, a 20-year smoothing spline was used to 
enhance the low-frequency signals and improve the strength of the 
temperature correlation. A future P. aristata temperature reconstruction 
may also be improved using a similar smoothing calculation. Another 
issue hampering a temperature reconstruction is the question of whether 
remnant samples can be used with confidence to reproduce temperature. 
The sampling sites with temperature sensitive trees contained multiple 
climate response signals and the remnants at those sites may also 
contain a similar mix of climate signals. One prospective solution could 
be a demographic study of a sampling site with intensive sampling that 
accurately maps the distribution and cohorts of trees over multiple 
centuries. The shifting proximity of a remnant to upper tree line could 
potentially be used as a proxy for increased temperature sensitivity and 
allow incorporation into a temperature reconstruction. Another 
approach could couple fine scale temperature measurements across an 
elevational gradient at a sampling site with growth modeling to better 
understand the temperature thresholds that result in tree growth limited 
by temperature rather than moisture. Both of these approaches have 
been utilized with P. longaeva (Bruening et al., 2018, 2017; Tran et al., 
2017) and could be applied to P. aristata. 

5. Conclusions 

Rocky Mountain bristlecone pine (P. aristata) has the potential to 
skillfully reconstruct June moisture variability in the Southern Rocky 
Mountains, with a secondary potential to reconstruct a low-frequency 
component of late summer minimum temperatures contingent upon 
additional investigatory work. Mixed climate responses within single 
sampling sites necessitate the careful selection of individual trees for use 
in climate reconstructions when using the existing chronologies. The 

dominant P. aristata tree-ring growth signal in Colorado and New 
Mexico is a current year June precipitation and maximum temperature 
sensitivity, explained by a plausible physical mechanism. The extent of 
this climate response across multiple sampling sites makes it an ideal 
parameter for a climate reconstruction. There also exists a separate set of 
trees with a low-frequency long-term positive response to temperature 
simultaneously present in trees with a weak June drought stress 
response at higher frequency. These temperature sensitive trees also 
have a potential for climate reconstruction, albeit one requiring more 
intensive sampling and screening for temperature response. 

There are few late-spring/early-summer tree-ring precipitation re
constructions for the western U.S. outside a P. longaeva reconstruction in 
California (Hughes and Graumlich, 1996) and a Douglas fir/Limber pine 
reconstruction in Wyoming (Gray et al., 2004). The majority of tree-ring 
precipitation reconstructions are correlated with the winter prior to the 
current growing season. Gridded PDSI datasets such as the North 
American Drought Atlas (NADA) also largely reflect a cool season 
moisture signal (Cook et al., 2010). Streamflow in the semi-arid western 
U.S. peaks in late-spring/early-summer as the winter snowpack provides 
water through a typically dry period. Increases in 
late-spring/early-summer precipitation have been shown to extend the 
period of snowmelt runoff in high elevation river basins (Dudley et al., 
2017). A P. aristata reconstruction could provide a record of years with a 
cool, wet June versus those years with a warm, dry June, adding to our 
pre-instrumental understanding of this relationship between winter and 
early summer moisture. 

The original impetus for this study was the need for more tree-ring 
based temperature reconstructions in the semi-arid Western U.S. 
While our results primarily point to a June drought signal, there does 
exist a weaker but still significant correlation with late summer mini
mum temperature. Future work is needed to overcome the limitations of 

Fig. 8. August (left) and September (right) 1-month temperature field correlation maps for T-1 original (no filter) and 30-yr high-pass filtered tree-growth series. 
Each coloured pixel represents a significant Pearson correlation (p < 0.05). R-values are broken into intervals of 0.1 for clarity, with map contour lines delineating the 
boundary between each interval. 
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this study, including the construction of chronologies with a higher 
number of constituent samples and a more informed approach to sam
pling for temperature. A next step in this work is the utilization of a 
process-based modeling approach (Vaganov et al., 2006; Anchukaitis 
et al., 2020) to better select trees for temperature sensitivity. Research 
on P. aristata cambial physiology is also needed to understand the 
environmental factors (including temperature) controlling ring-width 
growth. This could be accomplished through intensive cambial 
phenology (Ziaco et al., 2016). Work on tree proxies other than 
ring-width, such as cellular anatomy (Ziaco et al., 2016), latewood 
density (Briffa et al., 2001), or blue light intensity (Campbell et al., 
2007) may also produce P. aristata time series with stronger temperature 
correlations. 

These results represent a first step in understanding the complexity of 
climate sensitivity in P. aristata. We assumed that a close genetic rela
tionship between with P. longaeva and P. aristata would result in com
plexities that are similar to those found in P. longaeva, and our study 
confirmed this assumption. Any work utilizing existing P. aristata 
chronologies must recognize this complexity and take care in sample 
selection to screen for the climatic response under investigation. While 
our focus for this investigation was on the growth patterns of living 
P. aristata trees, we were fortunate to sample a large collection of 
remnant wood for future work at four sampling sites (APE, HER, NHL, 
and ZTS). These sites contained an abundant selection of downed trees, 
many over 2000 years in age. At APE and NHL, we constructed 
continuous chronologies dating back to 847 BCE and 778 BCE respec
tively. To the best of our knowledge, these represent the oldest and 
longest dendrochronologic collection of any tree species for both Colo
rado and New Mexico. 

Future efforts to clarify the connection between P. aristata tree 
growth and climate variability will provide the framework to develop 
multi-millennial tree-ring climate reconstructions from these ancient 
chronologies. This work could deepen our understanding of the controls 
on past hydroclimate interactions, improving our understanding of how 
natural variability underlies and interacts with climate change. 
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