Advanced 2

Spring 2023

Linear Algebra 101

Prepared by Mark on April 20, 2023

Part 1: Notation and Terminology

Definition 1:

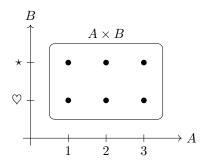
- \mathbb{R} is the set of all real numbers.
- \mathbb{R}^+ is the set of positive real numbers. Zero is not positive.
- \mathbb{R}_0^+ is the set of positive real numbers and zero.

Mathematicians are often inconsistent with their notation. Depending on the author, their mood, and the phase of the moon, \mathbb{R}^+ may or may not include zero. We will use the definitions above.

Definition 2:

Consider two sets A and B. The set $A \times B$ consists of all tuples (a,b) where $a \in A$ and $b \in B$. For example, $\{1,2,3\} \times \{\heartsuit,\star\} = \{(1,\heartsuit),(1,\star),(2,\heartsuit),(2,\star),(3,\heartsuit),(3,\star)\}$ This is called the *cartesian product*.

You can think of this as placing the two sets "perpendicular" to one another:



Problem 1:

Let $A = \{0, 1\} \times \{0, 1\}$ Let $B = \{a, b\}$ What is $A \times B$?

Problem 2:

What is $\mathbb{R} \times \mathbb{R}$?

Hint: Use the "perpendicular" analogy

Definition 3:

 \mathbb{R}^n is the set of *n*-tuples of real numbers.

In English, this means that an element of \mathbb{R}^n is a list of n real numbers:

Elements of \mathbb{R}^2 look like (a,b), where $a,b \in \mathbb{R}$. Note: \mathbb{R}^2 is pronounced "arrgh-two." Elements of \mathbb{R}^5 look like (a_1,a_2,a_3,a_4,a_5) , where $a_n \in \mathbb{R}$. \mathbb{R}^1 and \mathbb{R} are identical.

Intuitively, \mathbb{R}^2 forms a two-dimensional plane, and \mathbb{R}^3 forms a three-dimensional space. \mathbb{R}^n is hard to visualize when $n \geq 4$, but you are welcome to try.

Problem 3:

Convince yourself that $\mathbb{R} \times \mathbb{R}$ is \mathbb{R}^2 . What is $\mathbb{R}^2 \times \mathbb{R}$?

Part 2: Vectors

Definition 4:

Elements of \mathbb{R}^n are often called *vectors*.

As you may already know, we have a few operations on vectors:

- Vector addition: $[a_1, a_2] + [b_1, b_2] = [a_1 + b_1, a_2 + b_2]$

• Scalar multiplication: $x \times [a_1, a_2] = [xa_1, xa_2]$. The above examples are for \mathbb{R}^2 , and each vector thus has two components. These operations are similar for all other n.

Problem 4:

Compute the following or explain why you can't:

- [1,2,3]-[1,3,4] Subtraction works just like addition. $4\times[5,2,4]$
- a+b, where $a \in \mathbb{R}^5$ and $b \in \mathbb{R}^7$

Problem 5:

Consider (2, -1) and (3, 1) in \mathbb{R}^2 .

Can you develop geometric intuition for their sum and difference?

Definition 5: Euclidean Norm

A *norm* on \mathbb{R}^n is a map from \mathbb{R}^n to \mathbb{R}^+_0

Usually, one thinks of a norm as a way of mesuring "length" in a vector space.

The norm of a vector v is written ||v||.

We usually use the *Euclidean norm* when we work in \mathbb{R}^n .

If $v \in \mathbb{R}^n$, the Euclidean norm is defined as follows:

If
$$v = [v_1, v_2, ..., v_n],$$

$$||v|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

This is simply an application of the Pythagorean theorem.

Problem 6:

Compute the euclidean norm of

- [2, 3]
- [-2, 1, -4, 2]

Problem 7:

Show that $a \cdot a$ is $||a||^2$.

Part 3: Dot Products

Definition 6:

We can also define the $dot\ product$ of two vectors.¹

The dot product maps two elements of \mathbb{R}^n to one element of \mathbb{R} :

$$a \cdot b = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

Problem 8:

Compute $[2, 3, 4, 1] \cdot [2, 4, 10, 12]$

Problem 9:

Show that the dot product is

- Commutative
- Distributive $a \cdot (b+c) = a \cdot b + a \cdot c$
- Homogenous: $x(a \cdot b) = xa \cdot b = a \cdot xb$ $x \in \mathbb{R}$, and a, b are vectors.
- Positive definite: $a \cdot a \ge 0$, with equality iff a = 0 $a \in \mathbb{R}^n$, and 0 is the zero vector.

Formally, we would say that the dot product is a map from $\mathbb{R}^n \times \mathbb{R}^n$ to \mathbb{R} . Why is this reasonable?

It's also worth noting that a function f from X to Y can be defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition.

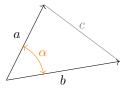
¹Bonus content. Feel free to skip.

Problem 10:

Say you have two vectors, a and b. Show that $a \cdot b = ||a|| \ ||b|| \cos(\alpha)$, where α is the angle between a and b.

Hint: What is c in terms of a and b?

Hint: The law of cosines is $a^2+b^2-2ab\cos(\alpha)=c^2$ Hint: The length of a is ||a||



Problem 11:

If a and b are perpendicular, what must $a \cdot b$ be? Is the converse true?

Part 4: Matrices

Definition 7:

A matrix is a two-dimensional array of numbers:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

The above matrix has two rows and three columns. It is thus a 2×3 matrix.

The order "first rows, then columns" is usually consistent in linear algebra.

If you look closely, you may also find it in the next definition.

Definition 8:

We can define the product of a matrix A and a vector v:

$$Av = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1a + 2b + 3c \\ 4a + 5b + 6c \end{bmatrix}$$

Note that each element of the resulting 2×1 matrix is the dot product of a row of A with v:

$$Av = \begin{bmatrix} -r_1 - \\ -r_2 - \end{bmatrix} \begin{bmatrix} | \\ v \\ | \end{bmatrix} = \begin{bmatrix} r_1 \cdot v \\ r_2 \cdot v \end{bmatrix}$$

Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.

Problem 12:

Compute the following:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

Problem 13:

Say you multiply a size-m vector v by an $m\times n$ matrix A.

What is the size of your result Av?

Definition 9:

We can also multiply a matrix by a matrix:

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 10 & 20 \\ 100 & 200 \end{bmatrix} = \begin{bmatrix} 210 & 420 \\ 430 & 860 \end{bmatrix}$$

Note each element of the resulting matrix is dot product of a row of A and a column of B:

$$AB = \begin{bmatrix} -r_1 - \\ -r_2 - \end{bmatrix} \begin{bmatrix} | & | \\ v_1 & v_2 \\ | & | \end{bmatrix} = \begin{bmatrix} r_1 \cdot v_1 & r_1 \cdot v_2 \\ r_2 \cdot v_1 & r_2 \cdot v_2 \end{bmatrix}$$

$$\left[\begin{array}{c} 1 & 2 \\ \hline 3 & 4 \end{array}\right] \left[\begin{array}{c} 10 & 20 \\ 100 & 200 \end{array}\right] = \left[\begin{array}{c} 210 & 420 \\ 430 & 860 \end{array}\right]$$

Problem 14:

Compute the following matrix product.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{bmatrix}$$

Problem 15:

Compute the following matrix product or explain why you can't.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 10 & 20 \\ 30 & 40 \end{bmatrix}$$

Problem 16:

If A is an $m \times n$ matrix and B is a $p \times q$ matrix, when does the product AB exist?

Problem 17:

Is matrix multiplication commutative?

Does AB = BA for all A, B?

You only need one counterexample to show this is false.

Definition 10:

Say we have a matrix A. The matrix A^T , pronounced "A-transpose", is created by turning rows of A into columns, and columns into rows:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Problem 18:

Compute the following:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^T \qquad \begin{bmatrix} 1 \\ 3 \\ 3 \\ 7 \end{bmatrix}^T \qquad \begin{bmatrix} 1 & 2 & 4 & 8 \end{bmatrix}^T$$

The "transpose" operator is often used to write column vectors in a compact way. Vertical arrays don't look good in horizontal text.

Problem 19:

Consider the vectors $a = [1, 4, 3]^T$ and $b = [9, 1, 4]^T$

- Compute the dot product $a \cdot b$.
- Can you redefine the dot product using matrix multiplication?

As you may have noticed, a vector is a special case of a matrix.

Problem 20:

A column vector is an $m \times 1$ matrix.

A row vector is a $1 \times m$ matrix.

We usually use column vectors. Why?

Hint: How does vector-matrix multiplication work?

Part 5: Bonus

Problem 21:

Show that the euclidean norm satisfies the triangle inequalty:

$$||x + y|| \le ||x|| + ||y||$$

Problem 22:

Show that the eucidean norm satisfies the reverse triangle inequality:

$$||x - y|| \ge |||x|| - ||y|||$$

Problem 23:

Prove the Cauchy-Schwartz inequality:

$$||x\cdot y|| \leq ||x|| \ ||y||$$