• Books
  • 1. Barth, F.G., Humphrey, J.A.C., and Secomb, T.W., eds. Sensors and Sensing in Biology and Engineering, Springer-Verlag Wien, 2003, 399 pp.
  • Invited Review Articles
  • 1. Skalak, R., Keller, S.R. and Secomb, T.W. Mechanics of blood flow. J. Biomech. Eng. 103: 102‑115 (1981).
  • 2. Secomb, T.W. Red blood cell mechanics and capillary blood rheology. Cell Biophysics 18: 231-251 (1991).
  • 3. Pries, A.R., Secomb, T.W. and Gaehtgens, P. Biophysical aspects of blood flow in the microvasculature. Cardiovascular Res. 32: 654-667 (1996).
  • 4. El-Kareh, A.W. and Secomb, T.W. Theoretical models for drug delivery to solid tumors. Critical Reviews in Biomedical Engineering 25: 503-571 (1997).
  • 5. Gillies, R.J., Schornack, P.A., Secomb, T.W. and Raghunand, N. Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1: 197-207 (1999).
  • 6. Pries, A.R., Secomb, T.W., and Gaehtgens, P. The endothelial surface layer. Pflügers Archiv: European Journal of Physiology 440: 653-666 (2000).
  • 7. Dewhirst, M.W., Klitzman, B., Braun, R.D., Brizel, D.M., Haroon, Z.A. and Secomb, T.W. Review of methods used to study oxygen transport at the microcirculatory level. Int. J. Cancer (Radiat. Oncol. Invest.) 90, 237-255 (2000).
  • 8. Pries, A.R. and Secomb, T.W. Structural adaptation of microvascular networks and development of hypertension. Microcirculation 9: 305-314 (2002).
  • 9. Secomb, T.W. and Pries, A.R. Information transfer in microvascular networks. Microcirculation 9: 377-387 (2002).
  • 10. Zakrzewicz, A., Secomb, T.W. and Pries, A.R. Angioadaptation: Keeping the vascular system in shape. News in Physiological Sciences 17: 197-201 (2002).
  • 11. Pries, A.R. and Secomb, T.W. Control of blood vessel structure: Insights from theoretical models. Am. J. Physiol., 288: H1010-1015 (2005).
  • 12. Secomb, T.W., Hsu, R., and Pries, A.R. Tribology of capillary blood flow. Proc. IMechE, Part J: J. Engineering Tribology, 220(J8): 767‑774 (2006).
  • 13. Secomb, T.W., Beard, D.A., Frisbee, J.C., Smith, N.P. and Pries, A.R. The role of theoretical modeling in microcirculation research. Microcirculation 15: 693-698 (2008). NIHMS305749.
  • 14. Pries, A.R. and Secomb, T.W. Modeling structural adaptation of microcirculation. Microcirculation 15: 753-764 (2008). PMC2593742.
  • 15. Secomb, T.W. Theoretical models for regulation of blood flow. Microcirculation 15: 765-775 (2008). PMC2593747.
  • 16. Pries, A.R., Höpfner, M., le Noble, F., Dewhirst, M.W. and Secomb, T.W. The shunt problem: Control of functional shunting in normal and tumour vasculature. Nature Reviews Cancer 10: 587-593 (2010). PMC3109666.
  • 17. Waters, S.L., Alastruey, J., Beard, D.A., Bovendeerd, P.H.M., Davies, P.F., Jayaraman, G., Jensen, O.E., Lee, J., Parker, K.H., Popel, A.S., Secomb, T.W., Sherwin, S.J., Shipley, R.J., Smith, N.P., van de Vosse. F.N. Theoretical models for coronary vascular biomechanics: Progress & challenges. Progress in Biophysics and Molecular Biology 104: 49-76 (2011). PMC3817728.
  • 18. Secomb, T.W. and Pries, A.R. The microcirculation: physiology at the mesoscale. Journal of Physiology 589: 1047-1052 (2011). PMC3060585.
  • 19. Pries, A.R., Reglin, B. and Secomb, T.W. Modeling of angioadaptation: Insights for vascular development. Int. J. Dev. Biol. 55: 399-405 (2011). PMC4940184.
  • 20. Secomb, T.W., Dewhirst, M.W. and Pries, A.R. Structural adaptation of normal and tumour vascular networks. Basic & Clinical Pharmacology & Toxicology 110: 63-69 (2012). PMC3500595.
  • 21. Secomb, T.W. and Pries, A.R. Blood viscosity in microvessels: Experiment and theory. C. R. Physique 14 (2013) 470–478. http://dx.doi.org/10.1016/j.crhy.2013.04.002. PMC4117233.
  • 22. Pries, A.R. and Secomb, T.W. Making microvascular networks work: angiogenesis, remodeling and pruning. Physiology 29: 446-455 (2014). PMC4280154.
  • 23. Secomb, T.W. Hemodynamics. Comprehensive Physiology 6:975-1003 (2016). NIHMS799126.
  • 24. Gagnon, L., Smith, A.F., Boas, D.A., Devor, A., Secomb, T.W. and Sakadžić, S. Modeling of cerebral oxygen transport based on in vivo microscopic imaging of microvascular network structure, blood flow and oxygenation. Frontiers in Computational Neuroscience. 10: 82 (2016). (20 pages). doi: 10.3389/fncom.2016.00082. PMC5006088.
  • 25. Secomb, T.W. Blood Flow in the Microcirculation. Annual Review of Fluid Mechanics 49: 443-461 (2017).
  • 26. Dewhirst, M.W. and Secomb, T.W. Transport of drugs from blood vessels to tumor tissue. Nature Reviews Cancer 17: 738–750 (2017).
  • 27. Dominelli, P.B., Wiggins, C.C., Roy, T.K., Secomb, T.W., Curry, T.B. and Joyner, M.J. The oxygen cascade during exercise in health and disease. Mayo Clinic Proceedings 96: 1017-1032 (2021).
  • 28. Roy, T.K. and Secomb, T.W. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 28: e12673 (2021) (18 pages).
  • 29. Dewhirst, M.W., Oleson, J.R., Kirkpatrick, J. and Secomb, T.W. Accurate three-dimensional thermal dosimetry and assessment of physiologic response are essential for optimizing thermoradiotherapy. Cancers 14: 1701 (2022) (24 pages).
  • 30. Roy, T.K., and Secomb, T.W. Functional implications of microvascular heterogeneity for oxygen uptake and utilization. Physiological Reports 10: e15303 (2022) (16 pages)
  • Refereed Journal Articles
  • 1. Goodman, P. and Secomb, T.W. Identification of enantiomorphously related space groups by electron diffraction. Acta Cryst. A33: 126‑133 (1977).
  • 2. Secomb, T.W. Flow in a channel with pulsating walls. J. Fluid Mech. 88: 273‑288 (1978).
  • 3. Secomb, T.W. and Rosenblat, S. Torsional oscillations of a non‑Newtonian fluid with a free surface. J. Fluid Mech. 93: 767‑780 (1979).
  • 4. Secomb, T.W. and Skalak, R. Surface flow of viscoelastic membranes in viscous fluids. Q. Jl. Mech. Appl. Math. 35: 233‑247 (1982).
  • 5. Secomb, T.W. and Skalak, R. A two‑dimensional model for capillary flow of an asymmetric cell. Microvasc. Res. 24: 194‑203 (1982).
  • 6. Secomb, T.W., Fischer, T.M. and Skalak, R. The motion of close‑packed red blood cells in shear flow. Biorheology 20: 283‑294 (1983).
  • 7. Secomb, T.W., Chien, S., Jan, K.‑M. and Skalak, R. The bulk rheology of close‑packed red blood cells in shear flow. Biorheology 20: 295‑309 (1983).
  • 8. Secomb, T.W. and Gross, J.F. Flow of red blood cells in narrow capillaries: Role of membrane tension. Int. J. Microcirc. Clin. Exp. 2: 229‑240 (1983).
  • 9. Stephanoff, K.D., Pedley, T.J., Lawrence, C.J. and Secomb, T.W. Fluid flow along a channel with an asymmetric oscillating constriction. Nature 305: 692‑695 (1983).
  • 10. Wright, S.H. and Secomb, T.W. Epidermal taurine transport in marine mussels. Amer. J. Physiol. 247: R346‑R355 (1984).
  • 11. Secomb, T.W., Skalak, R., Ozkaya, N. and Gross, J.F. Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163: 405‑423 (1986).
  • 12. Wright, S.H. and Secomb, T.W. Epithelial amino acid transport in marine mussels: Role in net exchange of taurine between gills and sea water. J. Exp.Biol. 121: 251‑270 (1986).
  • 13. Fleischman, G.J., Secomb, T.W. and Gross, J.F. Effect of extravascular pressure gradients on capillary fluid exchange. Math. Biosciences 81: 145‑164 (1986).
  • 14. Fleischman, G.J., Secomb, T.W. and Gross, J.F. The interaction of extravascular pressure fields and fluid exchange in capillary networks. Math. Biosciences 82: 141‑151 (1986).
  • 15. Secomb, T.W., Pries, A.R. and Gaehtgens, P. Hematocrit fluctuations within microvessels and estimation of Fahraeus effect. Int. J. Microcirc. Clin. Exp. 5: 335‑345 (1987).
  • 16. Secomb, T.W. Flow‑dependent rheological properties of blood in capillaries. Microvasc. Res. 34: 46‑58 (1987).
  • 17. Wright, S.H., Secomb, T.W. and Bradley, T.J. Apical membrane permeability of Mytilus gill: Influence of ultrastructure, salinity and competitive inhibitors on amino acid fluxes. J. Exp. Biol. 129: 205‑230 (1987).
  • 18. Lillioja, S., Young, A.A., Culter, C.L., Ivy, J.L., Abbott, W.G.H., Zawadzki, J.K., YkiJarvinen, H., Christin, L., Secomb, T.W. and Bogardus, C. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J. Clin. Invest. 80: 415‑424 (1987).
  • 19. Murata, T. and Secomb, T.W. Effects of shear rate on rouleau formation in simple shear flow. Biorheology 25: 113‑122 (1988).
  • 20. Secomb, T.W. Interaction between bending and tension forces in bilayer membranes. Biophys. J. 54: 743‑746 (1988).
  • 21. Murata, T. and Secomb, T.W. Effects of aggregation on flow properties of red blood cell suspensions in narrow vertical tubes. Biorheology 26: 247‑259 (1989).
  • 22. Halpern, D. and Secomb, T.W. The squeezing of red blood cells through capillaries with near‑minimal diameters. J. Fluid Mech. 203: 381‑400 (1989).
  • 23. Hsu, R. and Secomb, T.W. Motion of non‑axisymmetric red blood cells in cylindrical capillaries. J. Biomechanical Engineering 111: 147‑151 (1989).
  • 24. Hsu, R. and Secomb, T.W. A Green’s function method for analysis of oxygen delivery to tissue by microvascular networks. Math. Biosciences. 96: 61‑78 (1989).
  • 25. Meyer, J.‑U., Burkhard, P.M., Secomb, T.W. and Intaglietta, M. The Prony spectral line estimation (PSLE) method for the analysis of vascular oscillations. IEEE Trans. Biomed. Eng. 36: 968‑971 (1989).
  • 26. Dewhirst, M.W., Tso, C.Y., Oliver, R., Gustafson, C.S., Secomb, T.W. and Gross, J.F. Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int. J. Radiation Oncology Biol. Phys. 17: 91‑99 (1989).
  • 27. Sugihara‑Seki, M., Secomb, T.W. and Skalak, R. Two‑dimensional analysis of two‑file flow of red cells along capillaries. Microvasc. Res. 40: 379‑393 (1990).
  • 28. Pries, A.R., Secomb, T.W., Gaehtgens, P. and Gross, J.F. Blood flow in microvascular networks ‑ Experiments and simulation. Circulation Research 67: 826‑834 (1990).
  • 29. Dewhirst, M.W., Oliver, R., Tso, C.Y., Gustafson, C.S., Secomb, T.W. and Gross, J.F. Heterogeneity of tumor microvascular response to radiation. Int. J. Radiation Oncology Biol. Phys. 18: 559-568 (1990).
  • 30. Halpern, D. and Secomb, T.W. Viscous motion of disc‑shaped particles through parallel‑sided channels with near minimal widths. J. Fluid Mech. 231: 545-560 (1991).
  • 31. Hsu, R. and Secomb, T.W. Analysis of oxygen exchange between arterioles and surrounding capillary‑perfused tissue. J. Biomech. Eng. 114: 227-231 (1992).
  • 32. Dewhirst, M.W., Ong, E.T., Klitzman, B., Secomb, T.W., Vinuya, R.Z., Dodge, R., Brizel, D. and Gross, J.F. Perivascular oxygen tensions in a transplantable mammary tumor growing in a dorsal flap window chamber. Radiation Research 130: 171-182 (1992).
  • 33. Dewhirst, M.W., Vinuya, R.Z., Ong, E.T., Klitzman, B., Rosner, G., Secomb, T.W. and Gross, J.F. Effects of bradykinin on the hemodynamics of tumor and granulating normal tissue microvasculature. Radiation Research 130: 345-354 (1992).
  • 34. Halpern, D. and Secomb, T.W. The squeezing of red blood cells through parallel-sided channels with near-minimal widths. J. Fluid Mech. 244: 307-322 (1992).
  • 35. Dewhirst, M.W., Ong, E.T., Madwed, D., Klitzman, B., Secomb, T.W., Brizel, D., Bonaventura, J., Rosner, G., Kavanagh, B., Edwards, J. and Gross, J.F. Effects of the calcium channel blocker Flunarizine on tumor microvascular hemodynamics and oxygenation. Radiation Research 132: 61-68 (1992).
  • 36. Secomb, T.W., Hsu, R., Dewhirst, M.W., Klitzman, B. and Gross, J.F. Analysis of oxygen transport to tumor tissue by microvascular networks. Int. J. Rad. Onc. Biol. Phys. 25: 481-489 (1993).
  • 37. El-Kareh, A.W., Braunstein, S.L. and Secomb, T.W. Effect of cell arrangement and interstitial volume fraction on the diffusivity of monoclonal antibodies in tissue. Biophys. J. 64, 1638-1646 (1993).
  • 38. Secomb, T.W. and Hsu, R. Non‑symmetric motion of rigid closely‑fitting particles in fluid‑filled tubes. J. Fluid Mech. 257, 403-420 (1993).
  • 39. Secomb, T.W. and El-Kareh, A.W. A model for the motion and sedimentation of cylindrical red-cell aggregates during slow blood flow in narrow horizontal tubes. J. Biomech. Eng. 116, 243-249 (1994).
  • 40. Secomb, T.W. and Hsu, R. Simulation of oxygen transport in skeletal muscle: diffusive exchange between arterioles and capillaries. Am. J. Physiol. 267, H1214-1221 (1994).
  • 41. Dewhirst, M.W., Secomb, T.W., Ong, E.T., Hsu, R. and Gross, J.F. Determination of local oxygen consumption rates in tumors. Cancer Research 54, 3333-3336, (1994).
  • 42. Pries, A.R., Secomb, T.W., Gessner, T., Sperandio, M.B., Gross, J.F. and Gaehtgens, P. Resistance to blood flow in microvessels in vivo. Circ. Res. 75, 904-915 (1994).
  • 43. El-Kareh, A.W. and Secomb, T.W. Effect of increasing vascular hydraulic conductivity on delivery of macromolecular drugs to tumor cells. Int. J. Rad. Onc. Biol. Physics 32, 1419-1423 (1995).
  • 44. Secomb, T.W., Hsu, R., Ong, E.T., Gross, J.F. and Dewhirst, M.W. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncologica 34, 313-316 (1995).
  • 45. Pries, A.R., Secomb, T.W., and Gaehtgens, P. Design principles of vascular beds. Circ. Res. 77, 1017-1023 (1995).
  • 46. Pries, A.R., Secomb, T.W., and Gaehtgens, P. Structure and hemodynamics of microvascular networks: Heterogeneity and correlations. Am. J. Physiol. 269, H1713-H1722 (1995).
  • 47. Secomb, T.W. and Hsu, R. Red blood cell mechanics and functional capillary density. Int. J. Microcirc. Clin. Exp. 15:250-254 (1995).
  • 48. Pries, A.R., Secomb, T.W., and Gaehtgens, P. The relationship between structural and hemodynamic heterogeneity in microvascular networks. Am. J. Physiol. 270, H545-553 (1996).
  • 49. El-Kareh, A.W. and Secomb, T.W. Stokes flow impinging on a spherical cap on a plane wall. Q. Jl. Mech. Appl. Math. 49:179-193 (1996).
  • 50. Dewhirst, M.W., Ong, E.T., Rosner, G.L., Rehmus, S.W., Shan, S., Braun, R.D., Brizel, D.M. and Secomb, T.W. Arteriolar oxygenation in tumor and subcutaneous arterioles: effects of inspired air oxygen content. Br. J. Cancer 74, S241-S246 (1996).
  • 51. Dewhirst, M.W., Kimura, H., Rehmus, S.W., Braun, R.D., Papahadjopoulos, D., Hong, K. and Secomb, T.W. Microvascular studies on the origins of perfusion-limited hypoxia. Br. J. Cancer 74, S247-S251 (1996).
  • 52. Secomb, T.W. and Hsu, R. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties. Biophys. J. 71, 1095-1101 (1996)
  • 53. Secomb, T.W. and Hsu, R. Motion of red blood cells in capillaries with variable cross-sections. J. Biomech. Eng. 118: 538-544 (1996)
  • 54. Kimura, H., Ong, E.T., Hsu, R., Braun, R., Secomb, T.W., Papahadjopoulos, D., Hong, K. and Dewhirst, M.W. Fluctuations in red cell flux in tumor microvessels can lead to intermittent periods of hypoxia and reoxygenation in tumor parenchyma. Cancer Res. 56: 5522-5528 (1996).
  • 55. Pries, A.R., Secomb, T.W., Jacobs, H., Sperandio, M., Osterloh, K. and Gaehtgens, P. Microvascular blood flow resistance in vivo: Role of the endothelial surface layer. Am. J. Physiol. 273: H2272-2279 (1997).
  • 56. Secomb, T.W. and Hsu, R. Resistance to blood flow in non-uniform capillaries. Microcirculation 4: 421-427 (1997).
  • 57. Pries, A.R., Secomb, T.W., Sperandio, M. and Gaehtgens, P. Effects of plasma composition on microvascular blood flow resistance: Implications of hemodilution studies. Cardiovasc. Res. 37: 225-235 (1998).
  • 58. Secomb, T.W., Hsu, R. and A.R. Pries. A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. 274: H1016-H1022 (1998).
  • 59. Pries, A.R., Secomb, T.W., and Gaehtgens, P. Structural adaptation and stability of microvascular networks: theory and simulations. Am. J. Physiol. 275: H349-H360 (1998).
  • 60. Pries, A.R., Secomb, T.W., and Gaehtgens, P. Structural autoregulation of terminal vascular beds: Vascular adaptation and development of hypertension. Hypertension 33: 153-161 (1999).
  • 61. Dunn, T.J., Braun, R.D., Rhemus, W.E., Rosner, G.L., Secomb, T.W., Tozer, G.M., Chaplin, D.J. and Dewhirst, M.W.  The effects of hyperoxic and hypercarbic gases on tumour blood flow. Br. J. Cancer 80, 117-126 (1999).
  • 62. El-Kareh, A.W. and Secomb, T.W. A model for red blood cell motion in bifurcating microvessels. Int. J. Multiphase Flow 26: 1545-1564 (2000).
  • 63. Secomb, T.W., Hsu, R., Beamer, N.B. and Coull, B.M. Theoretical simulation of oxygen transport to brain by networks of microvessels: effects of oxygen supply and demand on tissue hypoxia. Microcirculation 7, 237-247 (2000).
  • 64. Pries, A.R. and Secomb, T.W. Microcirculatory network structures and models. Ann. Biomed. Eng. 28, 916-921 (2000).
  • 65. El-Kareh, A.W. and Secomb, T.W. A mathematical model for comparison of bolus injection, continuous infusion, and liposomal delivery of doxorubicin to tumor cells. Neoplasia 2, 325-338 (2000).
  • 66. Secomb, T.W. and El-Kareh, A.W. A theoretical model for the elastic properties of very soft tissues. Biorheology 38, 305‑17 (2001).
  • 67. Secomb, T.W., Hsu R., and Pries, A.R. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38, 143-150 (2001).
  • 68. Secomb, T.W., Hsu, R. and Pries, A.R. Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am. J. Physiol. 281, H629-H636 (2001)
  • 69. Pries, A.R., Reglin, B. and Secomb, T.W. Structural adaptation of microvascular networks: Functional roles of adaptive responses. Am. J. Physiol. 281, H1015-1025 (2001).
  • 70. Snyder, S.A., Lanzen, J.L., Braun, R.D., Rosner, G., Secomb, T.W., Biaglow, J., Brizel, D.M., Dewhirst, M.W. Simultaneous administration of glucose and hyperoxic gas achieves greater improvement in tumor oxygenation than hyperoxic gas alone. Int. J. Rad. Onc. Biol. Phys. 51, 494-506 (2001).
  • 71. West, C.A, He, C., Su, M., Secomb, T.W., Konerding, M.A., Young, A.J. and Mentzer, S.J. Topographic changes in the inflammatory microcirculation associated with lymphocyte slowing and transmigration. Am. J. Physiol.281, H1742‑1750 (2001).
  • 72. McGuire, B.J. and Secomb, T.W. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand. J. Applied Physiology 91:2255-2265 (2001).
  • 73. Li, X., Su, M., West, C.A., He, C., Swanson, S.J., Secomb, T.W. and Mentzer, S.J. Effect of shear stress on efferent lymph-derived lymphocytes in contact with activated endothelial monolayers. In Vitro Cell Dev Biol, 37, 599‑605 (2001)
  • 74. Pries, A.R., Reglin, B. and Secomb, T.W. Structural adaptation of vascular networks: Role of the pressure response. Hypertension, 38:1476‑9 (2001)
  • 75. Goriely, A.R., Secomb, T.W. and Tolbert, L.P. Effect of the glial envelope on extracellular K+ diffusion in olfactory glomeruli. J. Neurophysiol. 87: 1712-1722 (2002).
  • 76. Kavanagh, B.D., Secomb, T.W., Hsu, R., Lin, P.-S., Venitz, J. and Dewhirst, M.W. A theoretical model for the effects of reduced hemoglobin-oxygen affinity on tumor oxygenation. Int. J. Rad. Onc. Biol. Phys. 53: 172-179 (2002).
  • 77. Secomb, T.W., Hsu, R. and Pries, A.R. Blood flow and red blood cell deformation in nonuniform capillaries: effects of the endothelial surface layer. Microcirculation 9: 189-196 (2002).
  • 78. El-Kareh, A.W. and Secomb, T.W. A mathematical model for cisplatin cellular pharmacodynamics. Neoplasia 5: 161-169 (2003).
  • 79. Pries, A.R., Reglin, B. and Secomb, T.W. Structural response of microcirculatory networks to changes in demand: Information transfer by shear stress. Am. J. Physiol., 284: H2204BH2212 (2003).
  • 80. Secomb, T.W., Konerding, M.A., West, C.A., Su, M., Young, A.J., Mentzer, S.J. Microangiectasias: structural regulators of lymphocyte transmigration. Proc. Nat. Acad. Sci. 100: 7231-7234 (2003). See Editors= Choice, Science 300: 1849 (2003).
  • 81. Erickson, C.P., Braun, R.D., Yu, D., Lanzen, J., Wilson, D., Brizel, D.M., Secomb, T.W., Biaglow, J.E., Dewhirst, M.W. Effect of longitudinal oxygen gradients on effectiveness of manipulation of tumor oxygenation. Cancer Res. 63: 4705‑4712 (2003).
  • 82. Lo, A., Fuglevand, A.J. and Secomb, T.W. Oxygen delivery to skeletal muscle fibers: Effects of microvascular unit structure and control mechanisms. Am. J. Physiol., 285: H955‑H963 (2003).
  • 83. McGuire, B.J. and Secomb, T.W. Estimation of capillary density in human skeletal muscle based on maximal oxygen consumption rates. Am. J. Physiol., 285: H2382‑2391 (2003).
  • 84. Pries, A.R. and Secomb, T.W. Rheology of the microcirculation. Clin. Hemorheol. Microcirc. 29: 143-148 (2003).
  • 85. Secomb, T.W., Hsu, R. and Dewhirst, M.W. Synergistic effects of hyperoxic gas breathing and reduced oxygen consumption on tumor oxygenation: A theoretical model. Int. J. Rad. Onc. Biol. Phys., 59: 572-578 (2004).
  • 86. El-Kareh, A.W. and Secomb, T.W. A theoretical model for intraperitoneal delivery of cisplatin and the effect of hyperthermia on drug penetration distance. Neoplasia 6: 117-127 (2004).
  • 87. Lo, A., Fuglevand, A.J. and Secomb, T.W. Theoretical simulation of K+‑based mechanisms for regulation of capillary perfusion in skeletal muscle. Am. J. Physiol., 287: H833-840 (2004).
  • 88. Cárdenas-Navia, L.I., Yu, D., Yarmolenko, P., Braun, R.D., Brizel, D.M., Secomb, T.W. and Dewhirst, M.W. Characterization of spatial pO2 frequency distributions and kinetics of pO2 fluctuations during air and oxygen breathing for two rodent tumor lines. Cancer Res., 64: 6010-6017 (2004).
  • 89. McGuire, B.J. and Secomb, T.W. Theoretical predictions of maximal oxygen consumption in hypoxia: effects of transport limitations. Respiratory Physiology and Neurobiology, 143: 87-97 (2004).
  • 90. Secomb, T.W., Hsu, R., Park, E.Y.H. and Dewhirst, M.W. Green’s function methods for analysis of oxygen delivery to tissue by microvascular networks. Annals of Biomedical Engineering, 32: 1519-1529 (2004).
  • 91. Gruionu, G., Hoying, J.B., Pries, A.R. and Secomb, T.W. Structural remodeling of the mouse gracilis artery following chronic alteration in blood supply. Am. J. Physiol., 288: H2047-2054 (2005).
  • 92. Carlson, B.E. and Secomb, T.W. A theoretical model for the myogenic response based on the mechanics of vascular smooth muscle. Microcirculation, 12: 327-338 (2005).
  • 93. Gruionu, G., Hoying, J.B., Gruionu, L.G., Laughlin, M.H. and Secomb, T.W. Structural adaptation increases predicted perfusion capacity following vessel obstruction in the arteriolar arcade network of pig skeletal muscle. Am. J. Physiol., 288: H2778-2784 (2005).
  • 94. El-Kareh, A.W. and Secomb, T.W. Two‑mechanism peak‑concentration model for cellular pharmacodynamics of doxorubicin. Neoplasia, 7: 705-713 (2005).
  • 95. Pries, A.R., Reglin, B. and Secomb, T.W. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension, 46: 725-731 (2005). See commentary: Modeling the vasculature: A judicious approach? by M.J. Mulvany. Hypertension 46:652-653 (2005).
  • 96. Pries, A.R. and Secomb, T.W. Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol., 289: H2657-H2664 (2005).
  • 97. Lanzen, J., Braun, R.D., Klitzman, B., Brizel, D., Secomb, T.W., Dewhirst, M.W. Direct demonstration of instabilities in oxygen concentrations within the extravascular compartment of an experimental tumor. Cancer Research, 66: 2219-2223 (2006).
  • 98. Hicks, K.O, Pruijn, F.B., Secomb, T.W., Hay, M.P., Hsu, R., Brown, J.M., Denny, W.A., Dewhirst, M.W., Wilson, W.R. Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia‑targeted anticancer drugs. J. Nat. Cancer Inst., 98: 1118-1128 (2006). See editorial: Sausville, E.A. Respecting cancer drug transportability: A basis for successful lead selection. J. Nat. Cancer Inst., 98: 1098-1099 (2006).
  • 99. Skotheim, J.M. and Secomb, T.W. Red blood cells and other non‑spherical capsules in shear flow: oscillatory dynamics and the tank‑treading‑to‑tumbling transition. Physical Rev. Letters 98: 078301 (4 pp.) (2007).
  • 100. Cardenas-Navia, L.I., Secomb, T.W. and Dewhirst, M.W. Effects of fluctuating oxygenation on tirapazamine efficacy: Theoretical predictions. International Journal of Radiation Oncology, Biology, Physics 67: 581-6 (2007).
  • 101. Secomb, T.W., Styp‑Rekowska, B. and Pries, A.R. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Annals of Biomedical Engineering 35: 755-765 (2007).
  • 102. Styp‑Rekowska, B., Mecha Disassa, N., Reglin, B., Ulm, L. Kuppe, H., Secomb, T.W. and Pries, A.R. An imaging spectroscopy approach for measurement of oxygen saturation and hematocrit during intravital microscopy. Microcirculation 14: 207-221 (2007).
  • 103. Goriely, A.R., Baldwin, A.L. and Secomb, T.W. Transient diffusion of albumin in aortic walls: Effects of binding to medial elastin layers. Am. J. Physiol.292:H2195-2201 (2007).
  • 104. Barber, B.J., Donnerstein R.L., Secomb, T.W., Pogreba-Brown, K., Steelman, R., Ellenby, M.S., Shen, I., Ungerleider, R.M. The dicrotic pulse: A common, non-ominous finding after the Ross operation. Pediatric Cardiology 28:247–249 (2007).
  • 105. El-Kareh, A.W., Labes, R.E. and Secomb, T.W. Cell cycle checkpoint models for cellular pharma­cology of paclitaxel and platinum drugs. AAPS Journal 10:15-34 (2008). PMC2751448.
  • 106. Barber, J.O., Alberding, J.P., Restrepo, J.M. and Secomb, T.W. Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Annals of Biomedical Engineering, 36:1690-1698 (2008). PMC2574853.
  • 107. Arciero, J.C, Carlson, B.E, and Secomb, T.W. Theoretical model of metabolic blood flow regulation: Roles of ATP release by red blood cells and conducted responses. Am. J. Physiol. 295: H1562-H1571 (2008). PMC2593502.
  • 108. Carlson, B.E, Arciero, J.C. and Secomb, T.W. Theoretical model of blood flow autoregulation: Roles of myogenic, shear-dependent and metabolic responses. Am. J. Physiol. 295: H1572-H1579 (2008). PMC2593503.
  • 109. Pries, A.R. and Secomb, T.W. Origins of heterogeneity in tissue perfusion and metabolism. Cardiovascular Research, 81:328-335 (2009). PMC2639106.
  • 110. Pries, A.R., Cornelissen, A.J.M., Sloot, A.A., Hinkeldey, M., Dreher, M.R., Höpfner, M., Dewhirst, M.W., Secomb, T.W. Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Computational Biology 5:e1000394 (2009) doi:10.371/journal.pcbi.1000394. PMC2682204.
  • 111. Reglin, B., Secomb, T.W., and Pries, A.R. Metabolic control of microvascular structure: Where are the oxygen sensors? Am J Physiol 297:H2206–H2219 (2009). PMC2793139.
  • 112. Harkins, K.D., Galons, J.P., Secomb, T.W., Trouard, T.P. Assessment of the effects of cellular tissue properties on ADC measurements by numerical simulation of water diffusion. Magnetic Resonance in Medicine 62:1414-1422 (2009). PMC2855231.
  • 113. Konerding, M.A., Turhan, A., Ravnic, D.J., Lin, M., Fuchs, C., Secomb, T.W., Tsuda, A., and Mentzer, S.J. Inflammation-induced intussusceptive angiogenesis in murine colitis. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology 293:849-857 (2010). PMC3045768
  • 114. Secomb, T.W. Mechanics and computational simulation of blood flow in microvessels. Medical Engineering and Physics. 33:800-804 (2011). PMC3115406.
  • 115. Barber, J.O., Restrepo, J.M. and Secomb, T.W. Simulated red blood cell motion in microvessel bifurcations: effects of cell-cell interactions on cell partitioning. Cardiovascular Engineering and Technology 2:349-360 (2011). PMC3613290.
  • 116. Russell, G., Harkins, K.D., Secomb, T.W., Galons, J.P. and Trouard, T.P. A finite difference method with periodic boundary conditions for simulations of diffusion-weighted magnetic resonance experiments in tissue. Physics in Medicine and Biology 57:N35-N46 (2012). PMC – in process
  • 117. Roy, T.K., Pries, A.R. and Secomb, T.W. Theoretical comparison of wall-derived and erythrocyte-derived mechanisms for metabolic flow regulation in heterogeneous microvascular networks. American Journal of Physiology 302:H1945-H1952 (2012). PMC4116421.
  • 118. Arciero, J.C, and Secomb, T.W. Spontaneous oscillations in a model for active control of microvessel diameters. Mathematical Medicine and Biology 29:163-180 (2012). PMC4104670.
  • 119. Fry, B.C., Lee, J. Smith, N.P. and Secomb, T.W. Estimation of blood flow rates in large microvascular networks. Microcirculation 19:530-538 (2012). PMC3407827.
  • 120. Hariprasad, D.S. and Secomb, T.W. Motion of red blood cells near microvessel walls: effects of a porous wall layer. Journal of Fluid Mechanics 705:195-212 (2012). PMC3593644.
  • 121. Gruionu, G., Hoying, J.B., Pries, A.R. and Secomb, T.W. Structural remodeling of the mouse gracilis artery: coordinated changes in diameter and medial area maintain circumferential stress. Microcirculation 19:610-618 (2012). PMC3579540
  • 122. Moulton, M.J. and Secomb, T.W. A low-order model for left ventricle dynamics throughout the cardiac cycle. Mathematical Medicine and Biology 30:45-63 (2013). PMC – in process
  • 123. Secomb, T.W., Alberding, J.P., Hsu, R., Dewhirst, M.W. and Pries, A.R. Angiogenesis: an adaptive biological patterning problem. PLoS Computational Biology 9:e1002983. doi:10.1371/journal.pcbi.1002983 (2013) (12 pages). PMC3605064.
  • 124. Ackermann, M., Tsuda, A., Secomb, T.W., Mentzer, S.J., Konerding, M.A. Intussusceptive remodeling of vascular branch angles in chemically-induced murine colitis. Microvascular Research, 87:75–82 (2013). PMC3627825.
  • 125. Fry, B.C., Roy, T.K., Secomb, T.W. Vascular recruitment in a theoretical model for blood flow regulation in heterogeneous microvessel networks. Physiological Reports 1:e00050. doi: 10.1002/phy2.50 (2013) (13 pages). PMC3770315.
  • 126. Marki, A., Emilov, E., Zakrzewicz, A., Koller, A., Secomb, T.W., Pries, A.R. Tracking of fluorescence nanoparticles with nanometer resolution in a biological system: assessing local viscosity and microrheology. Biomechanics and Modeling in Mechanobiology. DOI 10.1007/s10237-013-0499-7 (2013) (14 pages). PMC – in process.
  • 127. Foehrenbacher, A., Patel, K., Abbattista, M., Guise, C.P., Secomb, T.W., Wilson, W.R., Hicks, K.O. The role of bystander effects in the antitumor activity of the hypoxia-activated prodrug PR-104. Front. Oncol. 3:263. doi: 10.3389/fonc.2013.00263 (2013) (18 pages). PMC3791487.
  • 128. Foehrenbacher, A., Secomb, T.W., Wilson, W.R. and Hicks, K.O. Design of optimized hypoxia-activated prodrugs using pharmacokinetic/pharmacodynamic modeling. Front. Oncol. 3:314. doi: 10.3389/fonc.2013.00314 (2013) (17 pages). PMC3873531.
  • 129. Fontanella, A.N., Schroeder, T., Hochman, D.W., Chen, R.E., Hanna, G., Haglund, M.M., Rajaram, N., Frees, A.E., Secomb, T.W., Palmer, G.M., Dewhirst, M.W. Quantitative mapping of hemodynamics in the lung, brain, and dorsal window chamber-grown tumors using a novel, automated algorithm. Microcirculation. 20:724-35. doi: 10.1111/micc.12072. (2013). PMC3843942.
  • 130. Roy, T.K., Secomb, T.W. Theoretical analysis of the determinants of lung oxygen diffusing capacity. J Theor Biol. 351:1-8. (2014). PMC4070740.
  • 131. Jones, L.B., Secomb, T.W., Dewhirst, M.W. and El-Kareh, A.W. The additive damage model: a mathematical model for cellular responses to drug combinations. J Theor Biol. 357:10-20. (2014)
  • 132. Roy, T.K., Secomb, T.W. Functional sympatholysis and sympathetic escape in a theoretical model for blood flow regulation. Front. Physiol. 5:192. doi: 10.3389/fphys.2014.00192 (2014) (10 pages) PMC4033268.
  • 133. Majeed, M., Tawinwung, S., Eberson, L.S., Secomb, T.W., Larmonier, N. and Larson, D.F. Interleukin-2/anti-interleukin-2 immune complex expands regulatory T cells and reduces angiotensin II-induced aortic stiffening. Int. J. Hypertension 2014:126365 (2014) (12 pages). PMC4167213.
  • 134. Moulton, M.J. and Secomb, T.W. A low-order parametric description of left ventricular kinematics. Cardiovascular Engineering and Technology 5:348-358 (2014).
  • 135. Hariprasad, D.S. and Secomb, T.W. Two-dimensional simulation of red blood cell motion near a wall under a lateral force. Phys Rev E Stat Nonlin Soft Matter Phys. 90:053014 (2014) (7 pages). PMC4332696.
  • 136. Secomb, T.W. Krogh-cylinder and infinite-domain models for washout of an inert diffusible solute from tissue. Microcirculation 22:91-98 (2015). PMC4286507.
  • 137. Smith, A.F., Secomb, T.W., Pries, A.R., Smith, N.P. and Shipley, R.J. Structure-based algorithms for microvessel classification. Microcirculation 22:99-108 (2015). PMC4329063.
  • 138. Shibayama, T., Morales, M., Zhang, X., Martinez, L., Berteloot, A., Secomb, T.W. and Wright, S.H. Unstirred water layers and the kinetics of organic cation transport. Pharm Res (2015) 32:2937–2949. PMC4529401.
  • 139. Eberson, L.S., Sanchez, P.A., Majeed, B.A., Tawinwung, S., Secomb, T.W., Larson, D.F. Effect of lysyl oxidase inhibition on angiotensin II-induced arterial hypertension, remodeling, and stiffness. PLoS ONE 10: e0124013 (2015) (16 pages). PMC4395147.
  • 140. Majeed, B.A., Eberson, L.S., Tawinwung, S., Larmonier, N., Secomb, T.W., Larson, D.F. Functional aortic stiffness: role of CD4+ T lymphocytes. Front. Physiol. 6:235 (2015) (8 pages). PMC4549563.
  • 141. Hariprasad, D.S. and Secomb, T.W. Prediction of non-inertial focusing of red blood cells in Poiseuille flow. Phys Rev E Stat Nonlin Soft Matter Phys. 92:033008 (2015) (6 pages). PMC4765958.
  • 142. Smith, S.P., Secomb, T.W., Hong, B.D. and Moulton, M.J. Time-dependent regional myocardial strains in patients with heart failure with a preserved ejection fraction. BioMed Research International, Volume 2016, Article ID 8957307, (2016) (13 pages). PMC4794589.
  • 143. Maibier, M., Reglin, B., Nitzsche, B., Xiang, W., Rong, W.W, Hoffmann, B., Djonov, V., Secomb, T.W. and Pries, A.R. Structure and hemodynamics of vascular networks in the chorioallantoic membrane of the chicken. American Journal of Physiology: Heart and Circulatory Physiology 311:H913-926 (2016).
  • 144. Smith, A.F., Nitzsche, B., Maibier, M., Pries, A.R. and Secomb, T.W. Microvascular hemodynamics in the chick chorioallantoic membrane. Microcirculation 23:512-522 (2016). PMC5083153.
  • 145. Secomb, T.W. A Green’s function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries. Mathematical Medicine and Biology 33:475-494 (2016).
  • 146. Lücker, A., Secomb, T.W., Weber, B. and Jenny, P. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation 24:e12337 (2017) (12 pages). PMC5404950
  • 147. Rasmussen, P.M., Smith, A.F., Sakadžić, S., Boas, D.A., Pries, A.R., Secomb, T.W. and Østergaard, L. Model-based inference from microvascular measurements: Combining experimental measurements and model predictions using a Bayesian probabilistic approach. Microcirculation, 24:e12343 (2017) (16 pages)
  • 148. Xiang, W., Reglin, B., Rong, W., Nitzsche, B., Maibier, M., Hoffmann, B., Ruggeri, A., Guimarães, P., Secomb, T.W. and Pries, A.R. Dynamic remodeling of arteriolar collaterals after acute occlusion in chick chorioallantoic membrane. Microcirculation, 24:e12351 (2017) (14 pages).
  • 149. Reglin, B., Secomb, T.W., and Pries, A.R. Structural control of microvessel diameters: Origins of metabolic signals. Frontiers in Physiology, 8:813 (2017) (12 pages).
  • 150. Moulton, M.J., Hong, B.D. and Secomb, T.W., Simulation of Left Ventricular Dynamics Using a Low-Order Mathematical Model. Cardiovascular Engineering & Technology, 8:480–494 (2017). PMC5707240
  • 151. Rasmussen, P.M., Secomb, T.W., Pries, A.R. Modeling the hematocrit distribution in microcirculatory networks: A quantitative evaluation of a phase separation model. Microcirculation, 25:e12445 (2018) (17 pages). PMC6024080
  • 152. Lücker, A., Secomb, T.W., Weber, B., and Jenny, P. The relation between capillary transit times and hemoglobin saturation heterogeneity. Part 1: Theoretical Models. Frontiers in Physiology, 9:420 (2018) (15 pages). PMC5932636
  • 153. Williams, K.S., Secomb, T.W. and El-Kareh, A.W. Additive damage models for cellular pharmacodynamics of radiation-chemotherapy combinations. Bulletin of Mathematical Biology, 80:1236-1258 (2018).
  • 154. Lücker, A., Secomb, T.W., Barrett, M.J.P., Weber, B., and Jenny, P. The relation between capillary transit times and hemoglobin saturation heterogeneity. Part 2: Capillary Networks. Frontiers in Physiology, 9:1296 (2018) (12 pages). PMC6160581
  • 155. Roy, T.K., Secomb, T.W. Effects of Pulmonary Flow Heterogeneity on Oxygen Transport Parameters in Exercise. Respiratory Physiology and Neurobiology, 261:75-79 (2019).
  • 156. Shepherd, J.R.A., Dominelli, P.B., Roy, T.K., Secomb, T.W., Hoyer, J.D., Oliveira, J.L., Joyner, M.J. Modelling the relationships between haemoglobin oxygen affinity and the oxygen cascade in humans. Journal of Physiology, 579.16:4193-4202 (2019).
  • 157. Sandoval, P.J., Morales, M., Secomb, T.W. and Wright, S.H. Kinetic basis of metformin-MPP interactions with the organic cation transporter OCT2. American Journal of Physiology: Renal Physiology 317: F720-734 (2019).
  • 158. Hong, B.D., Moulton, M.J. and Secomb, T.W. Modeling left ventricular dynamics with characteristic deformation modes. Biomechanics and Modeling in Mechanobiology 18: 1683-1696 (2019).
  • 159. Burton, J.K., Bottino, D. and Secomb, T.W. A systems pharmacology model for drug delivery to solid tumors by antibody-drug conjugates: Implications for bystander effects. AAPS Journal, 22:12 (2020) (13 pages). NIHMSID1559325.
  • 160. Maibier, M., Bintig, W., Goede, A., Höpfner, M., Kuebler, W.M., Secomb, T.W., Nitzsche, B., Pries, A.R. Gap junctions regulate vessel diameter in chick chorioallantoic membrane vasculature by both tone-dependent and structural mechanisms. Microcirculation 27: e12590 (2020) (11 pages).
  • 161. Shipley, R.J., Smith, A.F., Sweeney, P.W., Pries, A.R., and Secomb, T.W. A hybrid discrete-continuum approach for modelling microcirculatory blood flow. Mathematical Medicine and Biology 37: 40-57 (2020).
  • 162. Nisson, P.L., Meybodi, T., Secomb, T.W., Berger, G.K., Roe, D.J., and Lawton M.T. Patients taking antithrombotic medications present less frequently with ruptured aneurysms. World Neurosurg. 136: e132-e140 (2020).
  • 163. Secomb, T.W., Bullock, K.V., Boas, D.A. and Sakadžić S. The mass transfer coefficient for oxygen transport from blood to tissue in cerebral cortex. Journal of Cerebral Blood Flow and Metabolism, 40: 1634–1646 (2020).
  • 164. Celaya-Alcala, J.T., Lee, G.V., Smith, A.F, Li, B. Sakadžić, S., Boas, D.A. and Secomb, T.W. Simulation of oxygen transport and estimation of tissue perfusion in extensive microvascular networks: application to cerebral cortex. Journal of Cerebral Blood Flow and Metabolism, 41: 656-669 (2021).
  • 165. Fry, B.C., Secomb, T.W. Distinct roles of red-blood-cell-derived and wall-derived mechanisms in metabolic regulation of blood flow. Microcirculation. 28:e12690 (2021) (10 pages).
  • 166. Alberding, J.P. and Secomb, T.W. Simulation of angiogenesis in three dimensions: application to cerebral cortex. PLoS Computational Biology 17:e1009164 (2021) (22 pages).
  • 167. Johnson, D.W., Roy, T.K. and Secomb, T.W. Analysis of flow resistance in the pulmonary arterial circulation: Implications for hypoxic pulmonary vasoconstriction. Journal of Applied Physiology 131:1211-1218 (2021).
  • 168. Nitzsche, B., Rong, W.W., Goede, A., Hoffmann, B., Scarpa, F., Kuebler, W.M., Secomb, T.W. Pries, A.R. Coalescent angiogenesis – Evidence for a novel concept of vascular network maturation. Angiogenesis 25:35-45 (2022).
  • 169. Şencan, İ, Esipova, T., Kılıç, K., Li, B., Desjardins, M., Yaseen, M.A., Wang, H., Porter, J.A., Jaswal, R., Kura, S., Fu, B., Secomb, T.W., Boas, D.A., Vinogradov, S.A., Devor, A., Sakadžić, S. Optical measurement of microvascular oxygenation and blood flow responses in awake mouse cortex during functional activation. Journal of Cerebral Blood Flow and Metabolism 42:510-525 (2022).
  • 170. Stepien, T.L. and Secomb, T.W. Spreading mechanics and differentiation of astrocytes during retinal development. Journal of Theoretical Biology 549:111208 (2022) (12 pages).
  • 171. Wright, S.H. and Secomb, T.W. Novel algorithm for kinetic analysis applied to transport by the uniporter, OCT2. American Journal of Physiology: Renal Physiology 323:F370-F387 (2022).
  • 172. Delmoe, M. and Secomb, T.W. Conditions for Kir-induced bistability of membrane potential in capillary endothelial cells. Mathematical Biosciences 355:108955 (2023) (4 pages)
  • 173. Alberding, J.P. and Secomb, T.W. Simulation of angiogenesis in three dimensions: Development of the retinal circulation. Bulletin of Mathematical Biology 85:27 (2023) (26 pages)
  • 174. Williams, K.S., Secomb, T.W. and El-Kareh, A.W. An autonomous mathematical model for the mammalian cell cycle. Journal of Theoretical Biology 569:111533 (2023) (19 pages)
  • 175. Moulton, M.J. and Secomb, T.W.  A fast computational model for circulatory dynamics: Effects of left ventricle-aorta coupling. Biomechanics and Modeling in Mechanobiology 22:947-959 (2023).
  • 176. Pian, Q., Alfadhel, M., Tang, J., Lee, G.V., Li, B., Fu, B., Ayata, Y., Yaseen, M.A., Boas, D.A., Secomb, T.W., Sakadzic, S. Cortical microvascular velocity mapping by combining Dynamic Light Scattering Optical Coherence Tomography and Two-Photon Microscopy. Journal of Biomedical Optics 28:076003 (2023) (13 pages)
  • 177. Webb, K.L., Joyner, M.J., Wiggins, C.C., Secomb, T.W., Roy, T.K. The dependence of maximum oxygen uptake and utilization on hemoglobin-oxygen affinity and altitude. Physiological Reports 11:e15806 (2023) (11 pages)
  • 178. Hu, N.W., Lomel, B.M., Rice, E.W., Hossain, M.M.N., Sarntinoranont, M., Secomb, T.W., Murfee, W.L., Balogh, P. Estimation of shear stress heterogeneity along capillary segments in angiogenic rat mesenteric microvascular networks. Microcirculation, Published online: 09 September 2023. https://doi.org/10.1111/micc.12830.
  • 179. Djurich, S. and Secomb, T.W. Analysis of potassium ion diffusion from neurons to capillaries: Effects of astrocyte endfeet geometry. Submitted to European Journal of Neuroscience.
  • Chapters in Books, Monographs and Conference Proceedings
  • 1. Secomb, T.W. Kinetics of close‑packed red blood cells in shear flow. In: “Mathematical Aspects of Physiology” (Hoppensteadt, F.C., ed.) American Mathematical Society, Providence, RI, 1981, pp. 167‑170.
  • 2. Secomb, T.W. and Skalak, R. Rheology of highly concentrated red blood cell suspensions. In: “1981 Advances in Bioengineering” (Viano, D.C., ed.) A.S.M.E., New York, 1981, pp. 143‑146.
  • 3. Secomb, T.W. and Gross, J.F. Theory of microvascular hematocrit fluctuations. In “Progress in Microcirculation Research II” (Courtice, F.C., Garlick, D.G. and Perry, M.A. eds.) Committee in Postgraduate Medical Education, University of New South Wales, Sydney, 1984, pp. 155‑160.
  • 4. Secomb, T.W. Mathematical modelling of convective capillary transport: Virtues and difficulties. In “Progress in Microcirculation Research II” (Courtice, F.C., Garlick, D.G. and Perry, M.A. eds.) Committee in Postgraduate Medical Education, University of New South Wales, Sydney, 1984, pp. 130‑133.
  • 5. Skalak, R., Ozkaya, N. and Secomb, T.W. Biomechanics of capillary blood flow. In “Frontiers in Biomechanics” (Schmid‑Schonbein, G.W., Woo, S.L‑Y., and Zweifach, B.W. eds.) Springer, New York, 1986, pp. 299‑313.
  •  6. Secomb, T.W. Mechanics of red blood cells in capillaries. In: “1986 Advances in Bioengineering” (Lantz, S.A. & King, A.I., eds.) A.S.M.E., New York, 1986, pp. 88‑89.
  • 7. Secomb, T.W., Fleischman, G.J., Papenfuss, H.‑D., Intaglietta, M. and Gross, J.F. Effects of reduced perfusion and hematocrit on flow distribution in capillary networks. In: “Progress in Applied Microcirculation Vol 12” Karger, Basel, 1987, pp. 205‑211. Also appeared as: Der Einfluss von verminderter Strömung und erniedrigtem Hämatokrit auf die Blutverteilung in kapillaren Netzwerken. In “Mikrozirkulation und Entzündung: Beziehungen zwischen Gefäßwand, Entzündungszellen and Mediatoren,” ed. K. Meßmer and F. Hammersen, Karger, Basel, 1988, pp. 223-230.
  • 8. Secomb, T.W., Wu, N.‑Z., Papenfuss H.‑D. and Gross, J.F. Role of red blood cells in determining flow distribution and flow cessation in capillary networks. In: “Microcirculation ‑ an update, vol. 1” (Tsuchiya, M., Asano, M., Mishima, Y. and Oda, M., eds) Elsevier, Amsterdam, 1987, pp. 485‑486.
  • 9. Secomb, T.W. and Hsu., R. Analysis of oxygen delivery to tissue by microvascular networks. In “Oxygen Transport to Tissue, X” (Mochizuki, M., Honig, C.R., Koyama, T., Goldstick, T.K. and Bruley, D.F., eds.) Plenum, New York, 1988, pp. 95‑103.
  • 10. Secomb, T.W., Pries, A.R., Gaehtgens, P. and Gross, J.F. Theoretical and experimental analysis of hematocrit distribution in microcirculatory networks. In “Microvascular Mechanics”, ed. J.S. Lee and T.C. Skalak, Springer, New York, 1989, pp. 40‑49.
  • 11. Secomb. T.W., Intaglietta, M. and Gross, J.F. Effects of vasomotion on microcirculatory mass transport: Theoretical Predictions. In “Progress in Applied Microcirculation Vol. 15: Vasomotion and Flow Modulation in the Microcirculation”, ed. M. Intaglietta, 1989, pp. 49‑61.
  • 12. Gross, J.F. and Secomb, T.W. Rheological behavior of blood in ischemia. Advances in Vascular Pathology 1990, eds. A. Strano and S. Novo. Elsevier, 1990, pp. 217‑222.
  • 13. Secomb, T.W., Hsu, R. and Dewhirst, M.W. Models for oxygen exchange between microvascular networks and surrounding tissue. In “Advances in Biological Heat and Mass Transfer 1992”, ed. J.J. McGrath. Am. Soc. Mech. Eng., 1992, pp. 121-127.
  • 14. Secomb, T.W. The mechanics of blood flow in capillaries. In “Contemporary Mathematics 141: Fluid Dynamics in Biology,” ed. A.Y. Cheer and C.P. van Dam, American Mathematical Society, Providence, R.I., 1993, pp. 519-542.
  • 15. Secomb, T.W. and El-Kareh, A.W. Slow blood flow in narrow tubes: Effects of aggregation, asymmetry and sedimentation. In “1993 Advances in Bioengineering”, ed. J.M. Tarbell. Am. Soc. Mech. Eng., 1993, pp. 381-384.
  • 16. Secomb, T.W. Mechanics of blood flow in the microcirculation. In “Biological Fluid Dynamics.” ed. C.P. Ellington and T.J. Pedley. Company of Biologists, Cambridge, 1995, pp. 305-321.
  • 17. Secomb, T.W., Pries, A.R. and Gaehtgens, P. Architecture and hemodynamics of microvascular networks. In “Biological Flows”, ed. M.Y. Jaffrin and C.G. Caro. Plenum, New York, 1995, pp. 159-176.
  • 18. Dewhirst, M., Ong, E., Smith, B, Evans, S., Secomb, T. and Wilson, D. Longitudinal gradients of vascular pO2 in R3230AC tumor microvessels in dorsal flap window chambers. In ASixth World Congress for Microcirculation,@ ed. K Messmer and W.M. Kübler. Monduzzi, Bologna, Italy, 1996, pp. 343-346.
  • 19. Dewhirst, M. and Secomb, T. Concepts in tumor oxygen transport. In ASixth World Congress for Microcirculation,@ ed. K Messmer and W.M. Kübler. Monduzzi, Bologna, Italy, 1996, pp. 347-352.
  • 20. Secomb, T.W., Hsu, R., Braun, R.D., Ross, J.R., Gross, J.F. and Dewhirst, M.W. Theoretical simulation of oxygen transport to tumors by three-dimensional networks of microvessels. In AOxygen Transport to Tissue XX,@ ed. A.G. Hudetz and D.F. Bruley, Plenum, NY, 1998, pp. 629-634.
  • 21. Secomb, T.W., Hsu, R., Braun, R.D. and Dewhirst, M.W. Analysis of oxygen transport to tumors: causes of heterogeneous tissue oxygenation. In Proceedings of the 1999 Bioengineering Conference, ed. V.K. Goel, R.L. Spilker, G.A. Ateshian and L.J. Soslowsky, ASME, New York, pp. 487-488.
  • 22. Pries, A.R. and Secomb, T.W.. Microvascular adaptation – regulation, coordination and function. Z. Kardiol 89: Suppl. 9, IX/117-130, 2000.
  • 23. El-Kareh, A.W. and Secomb, T.W. Comparison of intraperitoneal and intravenous delivery of cisplatin to tumors: a mathematical model. In Proceedings of the 2001 Bioengineering Conference, ed. R.D. Kamm, G.W. Schmid-Schonbein, G.A. Ateshian and M.S. Hefzy, ASME, New York, pp. 93-94.
  • 24. Secomb, T.W. and Pries, A.R. Mechanics of shear stress transmission to endothelial cells in blood vessels lined with an endothelial surface layer. In Proceedings of the 2001 Bioengineering Conference, ed. R.D. Kamm, G.W. Schmid-Schonbein, G.A. Ateshian and M.S. Hefzy, ASME, New York, pp. 389-390.
  • 25. McGuire, B.J. and Secomb, T.W. A theoretical model for oxygen transport in skeletal muscle: factors determining maximal oxygen consumption. In Proceedings of the 2001 Bioengineering Conference, ed. R.D. Kamm, G.W. Schmid-Schonbein, G.A. Ateshian and M.S. Hefzy, ASME, New York, pp. 457-458.
  • 26. Secomb, T.W., Reglin, B. and Pries, A.R. Functional and nonfunctional networks: Reactions to metabolic and hemodynamic stimuli. In Seventh World Congress for Microcirculation, Submitted Papers. Monduzzi Editore, Bologna, Italy, 2001, pp. 203-207.
  • 27. Secomb, T.W. and Pries, A.R. The blood vasculature as an adaptive system: Role of mechanical sensing. In Sensors and Sensing in Biology and Engineering, ed. F.G. Barth, J.A.C. Humphrey and T.W. Secomb, Springer-Verlag Wien, 2003, pp. 187-196.
  • 28. Secomb, T.W. Mechanics of red blood cells and blood flow in narrow tubes. In Hydrodynamics of Capsules and Cells, ed. C. Pozrikidis, Chapman & Hall/CRC, Boca Raton, Florida, 2003, pp. 163-196.
  • 29. El-Kareh, A.W. and Secomb, T.W. Theoretical analyses and simulations of anticancer drug delivery. In Drug Delivery Systems in Cancer Therapy, ed. D.M. Brown, Humana Press, Totowa NJ 2003, pp. 25-43.
  • 30. Secomb, T.W., Hsu, R. and Pries, A.R. The endothelial surface layer as a mechanical buffer: Effects on stresses experienced by endothelial cells and red blood cells in capillary flow. In Proceedings of the 2003 Summer Bioengineering Conference, ed. L.J. Soslowsky, T.C. Skalak, J.S. Wayne and G.A. Livesay, pp. 391-392.
  • 31. Secomb, T.W., Styp‑Rekowska, B. and Pries, A.R. Computational simulation of red blood cell deformation and radial migration in microvessels. In Proceedings of the Fifth International Conference on CFD in the Process Industries, ed. P.J. Witt and M.P. Schwarz. Melbourne, Australia, 2006 (3 pp.).
  • 32. Secomb, T.W. and Pries, A.R. Basic Principles of Hemodynamics. In Handbook of Hemorheology and Hemodynamics, ed. O.K. Baskurt, M.R. Hardeman, M.W. Rampling and H.J. Meiselman. IOS Press, Amsterdam, 2007, pp. 289-306.
  • 33. Pries, A.R. and Secomb, T.W. Blood Flow in Microvascular Networks. In: Handbook of Physiology: Microcirculation. Second Edition. ed. Ronald F. Tuma, Walter N. Duran, Klaus Ley. Academic Press, San Diego, 2008, pp. 3-36.
  • 34. Secomb, T.W. Mechanics of blood flow in capillaries. In Proceedings of 2nd Micro and Nano Flows Conference, Brunel University, West London, UK 2009 (8 pp.).
  • 35. Secomb, T.W., Barber, J.O. and Restrepo, J.M. Computational simulation of red blood cell motion in microvessel bifurcations. Proceedings of Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 9-11 December 2009 (4 pp).
  • 36. Secomb, T.W. Computational simulation of red blood cell motion in microvessels and bifurcations. In Computational Hydrodynamics of Capsules and Biological Cells, ed. C. Pozrikidis. Chapman & Hall/CRC, 2010, pp. 219-243.
  • 37. Secomb, T.W., Dewhirst, M.W., Pries, A.R. Growth and structural adaptation of blood vessels in normal and tumor tissues, in New Perspectives in Mathematical Biology, Fields Institute Communications, vol. 57, Amer. Math. Soc., Providence, RI, 2010, pp. 21-35.
  • 38. Secomb, T.W. Tribological Phenomena in Blood Vessels. In Encyclopedia of Tribology, ed. Q. Jane Wang and Yip-Wah Chung, Springer, New York, 2013, pp. 3806-3810.
  • 39. Secomb, T.W. Computational methods for modeling retinal hemodynamics and oxygen transport. In 4th International Conference on Computational and Mathematical Biomedical Engineering – CMBE2015, France. P. Nithiarasu and E. Budyn (Eds.) 2015, pp. 612-615.
  • 40. Secomb, T.W. Hemodynamics and vascular remodeling. In M. Hecker, D. J. Duncker (eds.), Vascular Mechanobiology in Physiology and Disease, Cardiac and Vascular Biology 8. Springer Nature Switzerland, 2021, pp. 1-20.
  • 41. Secomb, T.W. Simulation of blood flow and oxygen transport in vascular networks. In: Galis ZS (Ed). The Vasculome: From Many, One. San Diego: Elsevier Inc./Academic Press, 2022: pp. 173-179.
  • Book Reviews
  • 1. “An Introduction to Mathematical Physiology and Biology” by J. Mazumdar. Review by T.W. Secomb, J. Fluid Mech. 210, 659‑660, 1990.
  • Commentaries and Letters
  • 1. Pries, A.R. and Secomb, T.W. Response to commentary: Resistance to blood flow in vivo: from Poiseuille to the >in vivo viscosity law.= Biorheology 34: 369-375, 1997.
  • 2. Secomb, T.W. Comments on Point: Counterpoint “Positive effects of intermittent hypoxia (live high:train low) on exercise performance are/are not mediated primarily by augmented red cell volume”. J Appl Physiol 99:2454‑2455, 2005.
  • 3. Dewhirst, M.W., Cardenas Navia, I., Brizel, D.M., Willett, C. and Secomb, T.W. Multiple etiologies of tumor hypoxia require multifaceted solutions. Clin Cancer Res 13:375-377, 2007.
  • 4. Roy, T.K. and Secomb, T.W. Comment on: Viewpoint “A Paradigm Shift for Local Blood Flow Regulation”. Journal of Applied Physiology 116:707, 2014.
  • 5. Secomb, T.W. and Pries, A.R. Microvascular plasticity: angiogenesis in health and disease – Preface. Microcirculation 23:93-94, 2016. NIHMS799126.
  • 6. Dewhirst, M.W., Mowery, Y.M., Mitchell, J.B., Cherukuri, M.K., Secomb, T.W. Rationale for hypoxia assessment and amelioration for precision therapy and immunotherapy studies. J Clin Invest. 129: 489-491, 2019.