• Hydration-mediated G-protein–coupled receptor activation ; 2022 ;Steven D. E. Fried , Kushani S. K. Hewage, Anna R. Eitel, Andrey V. Strutsa, Nipuna Weerasinghe, Suchithranga M. D. C. Perera, and Michael F. Browna (2022) Proc. Natl. Acad. Sci. U.S.A119, e2117349119, https://doi.org/10.1073/pnas.2117349119.
  • Activation of the G-Protein-Coupled Receptor Rhodopsin by Water ; 2021 ;Udeep Chawla, Suchithranga M. D. C. Perera, Steven D. E. Fried, Anna R. Eitel, Blake Mertz, Nipuna Weerasinghe, Michael C. Pitman, Andrey V. Struts and Michael F. Brown, (2021) Angew. Chem. Int. Ed.60, 2288–2295
  • Membrane Curvature Revisited—the Archetype of Rhodopsin Studied by Time-Resolved Electronic Spectroscopy ; 2021 ;Steven D. E. Fried, James W. Lewis, Istvan Szundi, Karina Martinez-Mayorga, Mohana Mahalingam, Reiner Vogel, David S. Kliger, and Michael F. Brown (2021) Biophys. J. 120, 440–452
  • Native mass spectrometry reveals the simultaneous binding of lipids and zinc to rhodopsin ; 2021 ;Carolanne E. Norris, James E. Keener, Suchithranga M.D.C. Perera, Nipuna Weerasinghe, Steven D.E. Fried, William C. Resager, James G. Rohrbough, Michael F. Brown, Michael T. Marty (2021) International Journal of Mass Spectrometry, 460, 116477
  • Rhodopsin activation in lipid membranes based on solid-state NMR spectroscopy ; 2020 ;Perera, S. M. D. C. ,Xu, X.,Molugu, T. R., Struts, A. V.,  Brown, M. F. (2020) G. C. K. Roberts, A. Watts (eds.), Encyclopedia of Biophysics
  • Quantum Mechanical and Molecular Mechanics Modeling of Membrane‑Embedded Rhodopsins ; 2019 ; Ryazantsev, M. N.,   Nikolaev, D. M.,  Struts, · A. V.,  Brown · M. F. (2019) J. Membr. Biol. 252, 425–449
  • Small-angle neutron scattering reveals energy landscape for rhodopsin photoactivation ; 2018 ;Perera, S.M.D.C., Chawla,U.,  Shrestha,U.R.,  Bhowmik, D.,Struts, A.V., Qian, S., Chu, X.-Q. and Brown,M.F.  (2018) J. Phys. Chem. Lett.  9, 7064−7071.
  • Synthesis of 9-CD3-9-cis-retinal cofactor of isorhodopsin ; 2018 ;Navidi, M., Yadav, S., Struts, A. V., Brown, M. F.,  Nesnas, N. (2018) Tetrahedron Lett.59, 4521-4524
  • Solid-State Deuterium NMR Spectroscopy of Rhodopsin ; 2017 ;Perera S.M., Xu X., Molugu T.R., Struts A.V., Brown M.F. (2017) In: Webb G. (eds) Modern Magnetic Resonance. Springer, Cham.
  • Quasi-elastic Neutron Scattering Reveals Ligand-Induced Protein Dynamics of a G-Protein-Coupled Receptor ; 2016 ;Shrestha, U. R., Perera, S. M. D. C., Bhowmik, D., Chawla, U., Mamontov, E., Brown, M. F.  and Chu, X. -Q. (2016) J. Phys. Chem. Lett., 7, 4130−4136
  • Powdered G-Protein-Coupled Receptors ; 2016 ;Perera, S. M. D. C. Chawla, U. and Brown, M. F.(2016) J. Phys. Chem. Lett.7, 4230−4235.
  • A Usual G-Protein-Coupled Receptor in Unusual Membranes ; 2016 ;Chawla, U., Jiang, Y., Zheng, W., Kuang, L., Perera, S. M. D. C., Pitman, M. C., Brown, M. F. and Liang H. (2016) Angew. Chem. Int. Ed55, 588 –592
  • Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy ; 2015 ;Struts, A. V., Chawla, U., Perera, S. M. D. C., and Brown, M. F. (2015),in Methods in Molecular Biology 1271, Jastrzebska, B. (Ed.), Springer, pp. 133–158 (invited book chapter).
  • Retinal Flip in Rhodopsin Activation? ; 2015 ;Feng, J., Brown, M. F. and Mertz, B. Biophys. J. (2015) 108, 2767-2770.
  • Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy ; 2015 ;Struts, A. V., Barmasov,  A. V.  and Brown, M. F. (2015) Optics and Spectroscopy,  Vol. 118, 711–717.
  • Structural Dynamics of Retinal in Rhodopsin Activation Viewed by Solid-State 2H NMR Spectroscopy, in Advances in Biological Solid-State NMR: Proteins and Membrane- Active Peptides ; 2014 ;Struts, A. V., and Brown, M. F. (2014), The Royal Society of Chemistry, Cambridge, pp. 320– 352.
  • Retinal ligand mobility explains internal hydration and reconciles active rhodopsin structures ; 2014 ;Leioatts, N., Mertz, B., Martínez-Mayorga, K., Romo, T. D., Pitman, M. C., Feller, S. E., Grossfield, A., and Brown, M. F. (2014),Biochemistry 53, 376–385.
  • Retinal Conformation Governs pKa of Protonated Schiff Base in Rhodopsin Activation ; 2013 ;Zhu, S., Brown, M. F., Feller, S. E., J. Am. Chem. Soc. 135, 9391−9398.
  • Activation of Rhodopsin Based on Solid-State NMR Spectroscopy ; 2013 ;Struts, A. V., and Brown, M. F., in Encyclopedia of Biophysics, Roberts, G. C. K. (Ed.), Springer-Verlag, Heidelberg, pp. 2231–2243.
  • Molecular Dynamics Simulations Reveal Specific Interactions of Posttranslational Palmitoyl Modifications with Rhodopsin in Membranes ; 2012 ;Olausson, B. E. S., Grossfield, A., Pitman, M. C., Brown, M. F., Feller, S. E., and Vogel, A., J. Am. Chem. Soc. 134, 4324−4331.
  • Molecular Simulations and Solid-State NMR Investigate Dynamical Structure in Rhodopsin Activation ; 2012 ;Mertz, B., Struts, A. V., Feller, S. E., and Brown, M. F., Biochim. Biophys. Acta 1818, 241–251.
  • UV–Visible and Infrared Methods for Investigating Lipid–Rhodopsin Membrane Interactions ; 2012 ;Brown, M. F., in Methods in Molecular Biology, Klein-Seetharaman, J., and Nagarajan, V. (Eds.), Springer, pp. 127–153
  • Retinal Dynamics Underlie Inverse-Agonist to Agonist Switch in Rhodopsin Activation ; 2011 ;Struts, A. V., Salgado, G. F. J., Martínez-Mayorga, K., and Brown, M. F., Nature Struct. Mol. Biol. 18, 392-394.
  • Steric and Electronic Influences on the Torsional Energy Landscape of Retinal ; 2011 ;Mertz, B., Lu, M., Brown, M. F., and Feller, S. E., Biophys. J. 101, L17-L19.
  • Solid-State 2H NMR Relaxation Illuminates Functional Dynamics of Retinal Cofactor in Membrane Activation of Rhodopsin ; 2011 ;Struts, A. V., Salgado, G. F. J., and Brown, M. F., Proc. Natl. Acad. Sci. U.S.A. 108, 8263-8268.
  • Retinal Dynamics During Light Activation of Rhodopsin Revealed by Solid-State NMR Spectroscopy ; 2010 ;Brown, M. F., Salgado, G. F. J., Struts, A. V., Biochim. Biophys. Acta 1798, 177-193.
  • Sequential Rearrangement of Interhelical Networks Upon Rhodopsin Activation in Membranes: The Meta IIa Conformational Substate ; 2010 ;Zaitseva, E., Brown, M. F., and Vogel, R., J. Am. Chem. Soc. 132, 4815-4821.
  • Retinal Conformation and Dynamics in Activation of Rhodopsin Illuminated by Solid-State 2H NMR Spectroscopy ; 2009 ;Brown, M. F., Martínez-Mayorga, K., Nakanishi, K., Salgado, G. F. J., and Struts, A. V., Photochem. Photobiol. 85, 442-453.
  • Ultra-High Vacuum Surface Analysis Study of Rhodopsin Incorporation into Supported Lipid Bilayers ; 2008 ;Michel, D., Subramaniam, V., McArthur, S., Bondurant, B., D’Ambruoso, G. D., Hall, H. K., Jr., Brown, M. F., Ross, E. E., Saavedra, S. S., Castner, D. G., Langmuir 24, 4901–4906.
  • Two Protonation Switches Control Rhodopsin Activation in Membranes ; 2008 ;Mahalingam, M., Martínez-Mayorga, K., Brown, M. F., Vogel, R., Proc. Natl. Acad. Sci. U.S.A. 105 17795-17800.
  • Reconstitution of Rhodopsin into Polymerizable Planar Supported Lipid Bilayers: Influence of Dienoyl Monomer Structure ; 2008 ;Subramaniam, V., D’Ambruoso, G., Hall, H. K., Jr., Wysocki, R. J., Brown, M. F., Saavedra, S. S., Langmuir 24, 11067-11075.
  • Solid-State 2H NMR Spectroscopy of Retinal Proteins in Aligned Membranes ; 2007 ;Brown, M. F., Heyn, M. P., Job, C., Kim, S., Moltke, S., Nakanishi, K., Nevzorov, A. A., Struts, A. V., Salgado, G. F. J., Wallat, I., Biochim. Biophys. Acta 1768, 2979–3000.
  • Structural Analysis and Dynamics of Retinal Chromophore in Dark and Meta I States of Rhodopsin from 2H NMR of Aligned Membranes ; 2007 ;Struts, A. V., Salgado, G. F. J., Fujioka, N., Nakanishi, K., and Brown, M. F., J. Mol. Biol. 372, 50–66
  • Synthesis of CD3-labeled 11-cis-Retinals and Applications to Solid-State Deuterium NMR Spectroscopy of Rhodopsin ; 2007 ;Tanaka, K., Struts, A. V., Krane, S., Fujioka, N., Salgado, G. F. J., Karina Martínez-Mayorga, K., Brown, M. F., and Koji Nakanishi, K. , Bull. Chem. Soc. Japan 80, 2177-2184.
  • Retinal Counterion Switch Mechanism in Vision Evaluated by Molecular Simulations ; 2006 ;Martínez-Mayorga, K., Pitman, M. C., Grossfield, A., Feller, S. E., and Brown, M. F., J. Am. Chem. Soc. 28, 16502-16503.
  • Solid-State 2H NMR Structure of Retinal in Metarhodopsin I ; 2006 ;Salgado, G. F. J., Struts, A. V., Tanaka, T., Krane, S., Nakanishi, K., and Brown, M. F., J. Am. Chem. Soc. 128, 11067–11071.
  • Rhodopsin Reconstituted into a Planar-Supported Lipid Bilayer Retains Photoactivity after Cross-Linking Polymerization of Lipid Monomers ; 2005 ;Subramaniam, V., Alves, I. D., Salgado, G. F. J., Lau, P.-W., Wysocki, Jr., R. J., Salamon, Z., Tollin, G., Hruby, V. J., Brown, M. F., and Saavedra, S. S., J. Am. Chem. Soc. 127, 5320-5321.
  • Phosphatidylethanolamine Enhances Rhodopsin Photoactivation and Transducin Binding in a Solid-Supported Lipid Bilayer as Determined Using Plasmon-Waveguide Resonance Spectroscopy ; 2005 ;Alves, I. D., Salgado, G. F. J., Salamon, Z., Brown, M. F., Tollin, G., and Hruby, V. J., Biophys. J. 88, 198–210.
  • Membrane Model for the GPCR Rhodopsin: Hydrophobic Interface and Dynamical Structure ; 2004 ;Huber, T., Botelho, A. V., Beyer, K., and Brown, M. F., Biophys. J. 86, 2078-2100.
  • Deuterium NMR Structure of Retinal in the Ground State of Rhodopsin ; 2004 ;Salgado, G. F. J., Struts, A. V., Tanaka, K., Fujioka, N., Nakanishi, K., and Brown, M. F., Biochemistry 43, 12819-12828.
  • The Angles Between the C1–, C5–, and C9–Methyl Bonds of the Retinylidene Chromophore and the Membrane Normal Increase in the M Intermediate of Bacteriorhodopsin: Direct Determination with Solid-State 2H-NMR ; 1999 ;Moltke, S., Wallat, I., Sakai, N., Nakanishi, K., Brown, M. F., and Heyn, M. P., Biochemistry 38, 11762-11772.
  • Chromophore Orientation in Bacteriorhodopsin Determined from the Angular Dependence of Deuterium Nuclear Magnetic Resonance Spectra of Oriented Purple Membranes ; 1998 ;Moltke, S., Nevzorov, A. A., Sakai, N., Wallat, I., Job, C., Nakanishi, K., Heyn, M. P., and Brown, M. F., Biochemistry 37, 11821-11835.
  • Surface Plasmon Resonance Spectroscopy Studies of Membrane Proteins: Transducin Binding and Activation by Rhodopsin Monitored in Thin Membrane Films ; 1996 ;Salamon, Z., Wang, Y., Soulages, J. L., Brown, M. F., and Tollin, G., Biophys. J. 71, 283-294
  • Conformational Changes in Rhodopsin Probed by Surface Plasmon Resonance Spectroscopy ; 1994 ;Salamon, Z., Wang, Y., Brown, M. F., MacLeod, A., and Tollin, G., Biochemistry 33, 13706-13711.
  • Retinal Rod Outer Segment Lipids Form Bilayers in the Presence and Absence of Rhodopsin: A 31P NMR Study ; 1991 ;Deese, A. J., Dratz, E. A., and Brown, M. F., FEBS Lett. 124, 93-99.
  • Thermotropic Behavior of Retinal Rod Membranes and Dispersions of Extracted Phospholipids ; 1985 ;Miljanich, G. P., Brown, M. F., Mabrey-Gaud, S., Dratz, E. A., and Sturtevant, J. M., J. Membrane Biol. 85, 79-86.
  • Lipid Bilayer Dynamics and Rhodopsin-Lipid interactions: New Approach Using High-Resolution Solid-State 13C NMR ; 1983 ;Sefcik M. D., Schaefer, J., Stejskal, E. O., McKay, R. A., Ellena, J. F., Dodd, S. W., and Brown, M. F., Biochem. Biophys. Res. Commun114, 1048-1055.
  • Proton, Carbon-13, and Phosphorus-31 NMR Methods for the Investigation of Rhodopsin-Lipid Interactions in Retinal Rod Outer Segment Membranes ; 1982 ;Brown, M. F., Deese, A. J., and Dratz, E. A., Methods Enzymol. 81, 709-728
  • Interpretation of 100- and 360-MHz Proton Magnetic Resonance Spectra of Retinal Rod Outer Segment Disk Membranes ; 1977 ;Brown, M. F., Miljanich, G. P., and Dratz, E. A., Biochemistry 16, 2640-2648.
  • Proton Spin-Lattice Relaxation of Retinal Rod Outer Segment Membranes and Liposomes of Extracted Phospholipids ; 1977 ;Brown, M. F. Miljanich, G. P., and Dratz, E. A., Proc. Natl. Acad. Sci. USA 74, 1978-1982.
  • 1H-NMR Studies of Protein-Lipid Interactions in Retinal Rod Outer Segment Disc Membranes ; 1976 ;Brown, M. F., Miljanich G. P., Franklin, L. K., and Dratz, E. A., FEBS Lett. 70, 56-60.