2024

  • Osmotic stress studies of G-protein-coupled receptor rhodopsin activation; Andrey V. Struts, Alexander V. Barmasov, Steven D.E. Fried, Kushani S.K. Hewage, Suchithranga M.D.C. Perera, Michael F. Brown, Biophys. Chem., 304, (2024), 107112, ISSN 0301-4622, https://doi.org/10.1016/j.bpc.2023.107112
  • Efficient calculation of orientation-dependent lipid dynamics from membrane simulations; Milka Doktorova, George Khelashvili, Michael F. Brown, bioRxiv 2023.05.23.542012; doi: https://doi.org/10.1101/2023.05.23.542012

2023

  • Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2)2023 ;Doole, F.T., Gupta, S., Kumarage, T., Ashkar, R., Brown, M.F. (2023). Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2). In: Dantsker, A.R. (eds) Cholesterol and PI(4,5)P2 in Vital Biological Functions. Advances in Experimental Medicine and Biology, 1422. Springer, Cham. https://doi.org/10.1007/978-3-031-21547-6_2
  • Molecular simulations and NMR reveal how lipid fluctuations affect membrane mechanics2023 ;Milka Doktorova, George Khelashvili, Rana Ashkar and Michael F. Brown, (2023) Bio Phys. J. 122, 984-1002, https://doi.org/10.1016/j.bpj.2022.12.007

2022

  • Cholesterol Stiffening of Lipid Membranes2022 ;Fathima T Doole, Teshani Kumarage, Rana Ashkar, Michael F Brown, J Membr Biol. 2022, 255(4-5):385-405. doi: https://doi.org/10.1007/s00232-022-00263-9.
  • Phospholipid headgroups govern area per lipid and emergent elastic properties of bilayers2022 ;Trivikram R. Molugu, Robin L. Thurmond, Todd M. Alam, Theodore P. Trouard, and Michael F. Brown (2022) Bio phys J. 121, 4205-4220, https://doi.org/10.1016/j.bpj.2022.09.005
  • Hydration-mediated G-protein–coupled receptor activation2022 ;Steven D. E. Fried , Kushani S. K. Hewage, Anna R. Eitel, Andrey V. Strutsa, Nipuna Weerasinghe, Suchithranga M. D. C. Perera, and Michael F. Browna (2022) Proc. Natl. Acad. Sci. U.S.A119, e2117349119, https://doi.org/10.1073/pnas.2117349119
  • Cholesterol stiffening of lipid membranes and drug interactions: Insights from neutron spin echo and deuterium NMR spectroscopy2022 ;Chapter 29 Sudipta Gupta. Fathima T. Doole, Teshani Kumarage, Milka Doktorova, George Khelashvili, Rana Ashkar, Michael F. Brown (2022), Academic Press, Cholesterol From Chemistry and Biophysics to the Clinic, 771-796, https://doi.org/10.1016/B978-0-323-85857-1.00037-7

2021

  • Activation of the G-Protein-Coupled Receptor Rhodopsin by Water2021 ;Udeep Chawla, Suchithranga M. D. C. Perera, Steven D. E. Fried, Anna R. Eitel, Blake Mertz, Nipuna Weerasinghe, Michael C. Pitman, Andrey V. Struts and Michael F. Brown, (2021) Angew. Chem. Int. Ed.60, 2288–2295, https://doi.org/10.1002/anie.202003342
  • Membrane Curvature Revisited—the Archetype of Rhodopsin Studied by Time-Resolved Electronic Spectroscopy2021 ;Steven D. E. Fried, James W. Lewis, Istvan Szundi, Karina Martinez-Mayorga, Mohana Mahalingam, Reiner Vogel, David S. Kliger, and Michael F. Brown (2021) Biophys. J. 120, 440–452, https://doi.org/10.1016/j.bpj.2020.11.007
  • Native mass spectrometry reveals the simultaneous binding of lipids and zinc to rhodopsin2021 ;Carolanne E. Norris, James E. Keener, Suchithranga M.D.C. Perera, Nipuna Weerasinghe, Steven D.E. Fried, William C. Resager, James G. Rohrbough, Michael F. Brown, Michael T. Marty (2021) International Journal of Mass Spectrometry, 460, 116477, https://doi.org/10.1016/j.ijms.2020.116477

2020

  • Nicotinamide phosphoribosyltransferase purification using SUMO expression system; Molugu, T. R.,   Oita, R. C., Chawla, U., Camp, S. M., Brown, M. F., Garcia, J. G. N. (2020) Analytical Biochemistry 596 113597, https://doi.org/10.1016/j.ab.2020.113597
  • Rhodopsin activation in lipid membranes based on solid-state NMR spectroscopy2020 ;Perera, S. M. D. C. ,Xu, X.,Molugu, T. R., Struts, A. V.,  Brown, M. F. (2020) G. C. K. Roberts, A. Watts (eds.), Encyclopedia of Biophysics, https://doi.org/10.1007/978-3-642-35943-9_788-2
  • How cholesterol stiffens unsaturated lipid membranes 2020 ;Saptarshi Chakraborty, Milka Doktorova, Trivikram R. Molugu, Frederick A. Heberle, Haden L. Scott, Boris Dzikovski, Michihiro Nagao, Laura-Roxana Stingaciu, Robert F. Standaert, Francisco N. Barrera, John Katsaras, George Khelashvili, Michael F. Brown, and Rana Ashkar, Proc. Nat. Acad. Sci. 117  21896-21905. https://doi.org/10.1073/pnas.2004807117

2019

  • Cholesterol Effects on the Physical Properties of Lipid Membranes Viewed by Solid-state NMR Spectroscopy2019 ;Molugu T.R., Brown M.F. (2019)  In: Rosenhouse-Dantsker A., Bukiya A. (eds) Cholesterol Modulation of Protein Function.  Adv. Exp. Med. Biol.1115, 99-133. https://doi.org/10.1007/978-3-030-04278-3_5
  • Flexible lipid nanomaterials studied by NMR spectroscopy2019 ;Mallikarjunaiah, K.J., Kinnun, J.J., Petrache, H.I., Brown, M.F. (2019) Phys. Chem. Chem. Phys.  21, 18422–18457. https://doi.org/10.1039/C8CP06179C
  • Quantum Mechanical and Molecular Mechanics Modeling of Membrane‑Embedded Rhodopsins2019 ; Ryazantsev, M. N.,   Nikolaev, D. M.,  Struts, · A. V.,  Brown · M. F. (2019) J. Membr. Biol. 252, 425–449. https://doi.org/10.1007/s00232-019-00095-0
  • Collective dynamics in lipid membranes, Brown, M. F. (2019) In Mu-Ping Nieh, Frederick A. Heberle, John Katsaras (Eds.), Characterization of Biological Membranes: Structure and Dynamics (pp. 231–268). Berlin, Boston: De Gruyter. ISBN: 9783110544640

2018

  • Small-angle neutron scattering reveals energy landscape for rhodopsin photoactivation ;Perera, S.M.D.C., Chawla,U.,  Shrestha,U.R.,  Bhowmik, D.,Struts, A.V., Qian, S., Chu, X.-Q. and Brown,M.F.  (2018) J. Phys. Chem. Lett.  9, 7064−7071. https://doi.org/10.1021/acs.jpclett.8b03048
  • Synthesis of 9-CD3-9-cis-retinal cofactor of isorhodopsin; Navidi, M., Yadav, S., Struts, A. V., Brown, M. F.,  Nesnas, N. (2018) Tetrahedron Lett.59, 4521-4524. https://doi.org/10.1016/j.tetlet.2018.11.034
  • Solid-State 2H NMR Studies of Water-Mediated Lipid Membrane Deformation ;Molugu T.R., Xu X., Lee S., Mallikarjunaiah K.J., Brown M.F. (2018)  In: Webb G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_143

2017

2016

  • Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level2016 ;Molugu, T. R., Brown M. F. (2016) Chem. Phys. Lipids199, 39-51 https://doi.org/10.1016%2Fj.chemphyslip.2016.05.001
  • Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods2016 ;Struts, A. V., Barmasov, A. V. and Brown, M. F. (2016) Opt. Spectrosc., 120, 298–306, https://doi.org/10.1134/s0030400x15050240
  • A Usual G-Protein-Coupled Receptor in Unusual Membranes ;Chawla, U., Jiang, Y., Zheng, W., Kuang, L., Perera, S. M. D. C., Pitman, M. C., Brown, M. F. and Liang H. (2016) Angew. Chem. Int. Ed55, 588 –592. https://doi.org/10.1002%2Fanie.201508648
  • Quasi-elastic Neutron Scattering Reveals Ligand-Induced Protein Dynamics of a G-Protein-Coupled Receptor; Shrestha, U. R., Perera, S. M. D. C., Bhowmik, D., Chawla, U., Mamontov, E., Brown, M. F.  and Chu, X. -Q. (2016) J. Phys. Chem. Lett., 7, 4130−4136. https://doi.org/10.1021%2Facs.jpclett.6b01632
  • Powdered G-Protein-Coupled Receptors; Perera, S. M. D. C. Chawla, U. and Brown, M. F.(2016) J. Phys. Chem. Lett.7, 4230−4235. https://doi.org/10.1021/acs.jpclett.6b02328

2015

  • Retinal Flip in Rhodopsin Activation?; Feng, J., Brown, M. F. and Mertz, B. Biophys. J. (2015) 108, 2767-2770. https://doi.org/10.1016/j.bpj.2015.04.040
  • Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy; Struts, A. V., Barmasov,  A. V.  and Brown, M. F. (2015) Optics and Spectroscopy,  Vol. 118, 711–717. https://doi.org/10.1134/S0030400X15050240
  • Elastic Deformation and Area Per Lipid of Membranes: Atomistic View From Solid-State Deuterium NMR Spectroscopy2015 ;Kinnun, J. J., Mallikarjunaiah, K. J., Petrache, H. I., and Brown, M. F. (2015), Biochim. Biophys. Acta 1848, 246–259. https://doi.org/10.1016/j.bbamem.2014.06.004
  • Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy; Struts, A. V., Chawla, U., Perera, S. M. D. C., and Brown, M. F. (2015),in Methods in Molecular Biology 1271, Jastrzebska, B. (Ed.), Springer, pp. 133–158 (invited book chapter). https://doi.org/10.1007/978-1-4939-2330-4_10

2014

  • Generalized Model-Free Analysis of Nuclear Spin Relaxation Experiments2014 ;Xu, X., Struts, A. V., and Brown, M. F. (2014),eMagRes 3, 275–286 (invited review). https://doi.org/10.1002/9780470034590.emrstm1367
  • Phospholipid Bilayer Membranes: Deuterium and Carbon-13 NMR Spectroscopy2014 ;Leftin, A., Xu, X., and Brown, M. F. (2014),eMagRes 3, 199–214 (invited review). https://doi.org/10.1002/9780470034590.emrstm1368
  • Structural Dynamics of Retinal in Rhodopsin Activation Viewed by Solid-State 2H NMR Spectroscopy, in Advances in Biological Solid-State NMR: Proteins and Membrane- Active Peptides2014 ;Struts, A. V., and Brown, M. F. (2014), The Royal Society of Chemistry, Cambridge, pp. 320– 352. https://doi.org/10.1039/9781782627449-00320
  • Retinal ligand mobility explains internal hydration and reconciles active rhodopsin structures ;Leioatts, N., Mertz, B., Martínez-Mayorga, K., Romo, T. D., Pitman, M. C., Feller, S. E., Grossfield, A., and Brown, M. F. (2014),Biochemistry 53, 376–385. https://doi.org/10.1021/bi4013947
  • Area per lipid and cholesterol interactions in membranes from separated local-field 13C NMR spectroscopy2014 ;Leftin, A., Molugu, T. R., Job, C., Beyer, K., Brown, M. F. (2014),Biophys. J. 107, 2274–2286. https://doi.org/10.1016%2Fj.bpj.2014.07.044

2013

  • Solid-State NMR Spectroscopy for the Undergraduate Physical Chemistry Laboratory ;Kinnun, J. J., Leftin, A., and Brown, M. F., J. Chem. Ed. 90, 123−128. https://doi.org/10.1021/ed2004774
  • Activation of Rhodopsin Based on Solid-State NMR Spectroscopy ;Struts, A. V., and Brown, M. F., in Encyclopedia of Biophysics, Roberts, G. C. K. (Ed.), Springer-Verlag, Heidelberg, pp. 2231–2243.
  • Solid-state 13C NMR Reveals Annealing of Raft-Like Membranes Containing Cholesterol by the Intrinsically Disordered Protein α-Synuclein ;Leftin, A., Job, C., Beyer, K., and Brown, M. F., J. Mol. Biol. 425, 2973–2987. https://doi.org/10.1016/j.jmb.2013.04.002
  • Retinal Conformation Governs pKa of Protonated Schiff Base in Rhodopsin Activation; Zhu, S., Brown, M. F., Feller, S. E., J. Am. Chem. Soc. 135, 9391−9398. https://doi.org/10.1021/ja4002986

2012

  • Molecular Simulations and Solid-State NMR Investigate Dynamical Structure in Rhodopsin Activation2012 ;Mertz, B., Struts, A. V., Feller, S. E., and Brown, M. F., Biochim. Biophys. Acta 1818, 241–251. https://doi.org/10.1016%2Fj.bbamem.2011.08.003
  • UV–Visible and Infrared Methods for Investigating Lipid–Rhodopsin Membrane Interactions 2012 ;Brown, M. F., in Methods in Molecular Biology, Klein-Seetharaman, J., and Nagarajan, V. (Eds.), Springer, pp. 127–153 https://doi.org/10.1007%2F978-1-62703-023-6_8
  • Curvature Forces in Membrane Lipid-Protein Interactions 2012 ; Brown, M. F., Biochemistry 51, 9782−9795. https://doi.org/10.1021%2Fbi301332
  • Molecular Dynamics Simulations Reveal Specific Interactions of Posttranslational Palmitoyl Modifications with Rhodopsin in Membranes 2012 ;Olausson, B. E. S., Grossfield, A., Pitman, M. C., Brown, M. F., Feller, S. E., and Vogel, A., J. Am. Chem. Soc. 134, 4324−4331. https://doi.org/10.1021/ja2108382

2011

  • Solid-State 2H NMR Demonstrates Correspondence of Hydrostatic and Osmotic Pressures in Lipid Membrane Deformation 2011 ;Mallikarjunaiah, K. J., Leftin, A., Kinnun, J. J., Justice, M. J., Rogozea, A. L., Petrache, H. I., and Brown, M. F., Biophys. J. 100, 98-107. https://doi.org/10.1016%2Fj.bpj.2010.11.010
  • An NMR Data Base for Simulations of Membrane Dynamics 2011 ;Leftin, A., and Brown, M. F., Biochim. Biophys. Acta 1808, 818-839. https://doi.org/10.1016/j.bbamem.2010.11.027
  • Steric and Electronic Influences on the Torsional Energy Landscape of Retinal2011 ;Mertz, B., Lu, M., Brown, M. F., and Feller, S. E., Biophys. J. 101, L17-L19. https://doi.org/10.1016/j.bpj.2011.06.020
  • Solid-State 2H NMR Relaxation Illuminates Functional Dynamics of Retinal Cofactor in Membrane Activation of Rhodopsin2011 ;Struts, A. V., Salgado, G. F. J., and Brown, M. F., Proc. Natl. Acad. Sci. U.S.A. 108, 8263-8268. https://doi.org/10.1073%2Fpnas.1014692108
  • Retinal Dynamics Underlie Inverse-Agonist to Agonist Switch in Rhodopsin Activation2011 ;Struts, A. V., Salgado, G. F. J., Martínez-Mayorga, K., and Brown, M. F., Nature Struct. Mol. Biol. 18, 392-394. https://doi.org/10.1038%2Fnsmb.1982

2010

  • Sequential Rearrangement of Interhelical Networks Upon Rhodopsin Activation in Membranes: The Meta IIa Conformational Substate 2010 ; Zaitseva, E., Brown, M. F., and Vogel, R., J. Am. Chem. Soc. 132, 4815-4821. https://doi.org/10.1021%2Fja910317a
  • The N-Terminus of α-Synuclein Triggers Membrane Binding and Helix Folding2010 ;Bartels, T., Ahlstrom, L. S., Leftin, A., Kamp, F., Haass, C., Brown, M. F., and Beyer, K., Biophys. J. 99, 1-9. https://doi.org/10.1016/j.bpj.2010.06.035
  • Retinal Dynamics During Light Activation of Rhodopsin Revealed by Solid-State NMR Spectroscopy 2010 ;Brown, M. F., Salgado, G. F. J., Struts, A. V., Biochim. Biophys. Acta 1798, 177-193. https://doi.org/10.1016%2Fj.bbamem.2009.08.013

2009

  • Retinal Conformation and Dynamics in Activation of Rhodopsin Illuminated by Solid-State 2H NMR Spectroscopy2009 ;Brown, M. F., Martínez-Mayorga, K., Nakanishi, K., Salgado, G. F. J., and Struts, A. V., Photochem. Photobiol. 85, 442-453 https://doi.org/10.1111%2Fj.1751-1097.2008.00510.x
  • Phase Separation in Binary Mixtures of Bipolar and Monopolar Lipid Dispersions Revealed by 2H NMR Spectroscopy, Small Angle X-Ray Scattering, and Molecular Theory2009 ;Brownholland, D., Longo, G. S., Struts, Matthew J., Justice, M. J., Szleifer, I., Petrache, H. I., Brown, M. F., Thompson, D. H., Biophys. J. 97, 2700-2709. https://doi.org/10.1016%2Fj.bpj.2009.06.058

2008

  • Bolalipid Membrane Structure Revealed by Solid-State 2H NMR Spectroscopy 2008 ;Holland, D. P., Struts, A. V., Brown, M. F., and Thompson, D. H., J. Am. Chem. Soc. 130, 4584–4585. https://doi.org/10.1021%2Fja710190p
  • Fluid Mechanical Matching of H+-ATP Synthase Subunit c Ring with Lipids in Membranes Revealed by 2H Solid-State NMR 2008 ;Kobayashi, M., Struts, A. V., Fujiwara, T., Brown, M. F., Akutsu, H., Biophys. J. 94 , 4339–4347. https://doi.org/10.1529/biophysj.107.123745
  • Two Protonation Switches Control Rhodopsin Activation in Membranes 2008 ;Mahalingam, M., Martínez-Mayorga, K., Brown, M. F., Vogel, R., Proc. Natl. Acad. Sci. U.S.A. 105 17795-17800. https://doi.org/10.1073/pnas.0804541105
  • Raft–like Mixtures of Sphingomyelin and Cholesterol Investigated by Solid-State 2H NMR Spectroscopy2008 ;Bartels, T., Bittman, R., Beyer, K., and Brown, M. F., J. Am. Chem. Soc. 44, 14521-14532. https://doi.org/10.1021/ja801789t
  • Reconstitution of Rhodopsin into Polymerizable Planar Supported Lipid Bilayers: Influence of Dienoyl Monomer Structure2008 ;Subramaniam, V., D’Ambruoso, G., Hall, H. K., Jr., Wysocki, R. J., Brown, M. F., Saavedra, S. S., Langmuir 24, 11067-11075. https://doi.org/10.1021%2Fla801835g
  • Ultra-High Vacuum Surface Analysis Study of Rhodopsin Incorporation into Supported Lipid Bilayers2008 ;Michel, D., Subramaniam, V., McArthur, S., Bondurant, B., D’Ambruoso, G. D., Hall, H. K., Jr., Brown, M. F., Ross, E. E., Saavedra, S. S., Castner, D. G., Langmuir 24, 4901–4906. https://doi.org/10.1021/la800037r

2007

  • Structural Analysis and Dynamics of Retinal Chromophore in Dark and Meta I States of Rhodopsin from 2H NMR of Aligned Membranes2007 ;Struts, A. V., Salgado, G. F. J., Fujioka, N., Nakanishi, K., and Brown, M. F., J. Mol. Biol. 372, 50–66. https://doi.org/10.1016/j.jmb.2007.03.046
  • X-ray Scattering and Solid-State 2H NMR Probes of Structural Fluctuations in Lipid Membranes 2007 ;Petrache, H. I., and Brown, M. F., in Methods in Membrane Lipids, Dopico, A. (Ed.), Humana Press, Totowa, pp. 339-351. https://doi.org/10.1007/978-1-59745-519-0_23
  • Flexibility of Ras Lipid Modifications Studied by 2H Solid-State NMR and Molecular Dynamics Simulations2007 ;Vogel, A., Tan, K.-T., Waldmann, H., Feller, S. E., Brown, M. F., and Huster, D., Biophys. J. 93, 2697–2712. https://doi.org/10.1529%2Fbiophysj.107.104562
  • Dynamic Structure of Retinylidene Ligand of Rhodopsin Probed by Molecular Simulations2007 ;Lau, P.-W., Grossfield, A., Feller, S. E., Pitman, M. C., and Brown, M. F., J. Mol. Biol. 372, 906–917 https://doi.org/10.1016%2Fj.jmb.2007.06.047
  • Synthesis of CD3-labeled 11-cis-Retinals and Applications to Solid-State Deuterium NMR Spectroscopy of Rhodopsin 2007 ;Tanaka, K., Struts, A. V., Krane, S., Fujioka, N., Salgado, G. F. J., Karina Martínez-Mayorga, K., Brown, M. F., and Koji Nakanishi, K. , Bull. Chem. Soc. Japan 80, 2177-2184. http://dx.doi.org/10.1246/bcsj.80.2177
  • Solid-State 2H NMR Spectroscopy of Retinal Proteins in Aligned Membranes2007 ;Brown, M. F., Heyn, M. P., Job, C., Kim, S., Moltke, S., Nakanishi, K., Nevzorov, A. A., Struts, A. V., Salgado, G. F. J., Wallat, I., Biochim. Biophys. Acta 1768, 2979–3000. https://doi.org/10.1016/j.bbamem.2007.10.014

2006

  • Retinal Counterion Switch Mechanism in Vision Evaluated by Molecular Simulations2006 ;Martínez-Mayorga, K., Pitman, M. C., Grossfield, A., Feller, S. E., and Brown, M. F., J. Am. Chem. Soc. 28, 16502-16503. https://doi.org/10.1021/ja0671971
  • Solid-State 2H NMR Structure of Retinal in Metarhodopsin I2006 ;Salgado, G. F. J., Struts, A. V., Tanaka, T., Krane, S., Nakanishi, K., and Brown, M. F., J. Am. Chem. Soc. 128, 11067–11071. https://doi.org/10.1021/ja058738+
  • Solid-State Deuterium NMR Spectroscopy of Membranes 2006 ;Brown, M. F., Lope-Piedrafita, S., Martinez, G. V., and Petrache, H. I., in: Modern Magnetic Resonance, Webb, G. A. (Ed.), Springer, Heidelberg, pp. 245-256
  • Curvature and Hydrophobic Forces Drive Oligomerization and Modulate Activity of Rhodopsin in Membranes 2006 ;Botelho, A. V., Huber, T., Sakmar, T. P., and Brown, M. F., Biophys. J. 91, 4464-4477. https://doi.org/10.1529%2Fbiophysj.106.082776

2005

  • Packing and Elasticity of Polyunsaturated w-3 and w-6 Phospholipids as Determined by 2H NMR Spectroscopy and X-Ray Diffraction 2005 ;Rajamoorthi, K., Petrache, H. I., McIntosh, T. J., and Brown, M. F., J. Am. Chem. Soc. 127, 1576–1588. https://doi.org/10.1021/ja046453b
  • Lipid Modifications of a Ras Peptide Exhibit Altered Packing and Mobility Versus Host Membrane as Detected by 2H Solid-State NMR 2005 ;Vogel, A., Katzka, C. P., Waldmann, H., Arnold, K., Brown, M. F., and Huster, D., J. Am. Chem. Soc. 127, 12263-12272. https://doi.org/10.1021/ja051856c
  • Rhodopsin Reconstituted into a Planar-Supported Lipid Bilayer Retains Photoactivity after Cross-Linking Polymerization of Lipid Monomers 2005 ;Subramaniam, V., Alves, I. D., Salgado, G. F. J., Lau, P.-W., Wysocki, Jr., R. J., Salamon, Z., Tollin, G., Hruby, V. J., Brown, M. F., and Saavedra, S. S., J. Am. Chem. Soc. 127, 5320-5321. https://doi.org/10.1021/ja0423973
  • Phosphatidylethanolamine Enhances Rhodopsin Photoactivation and Transducin Binding in a Solid-Supported Lipid Bilayer as Determined Using Plasmon-Waveguide Resonance Spectroscopy 2005 ;Alves, I. D., Salgado, G. F. J., Salamon, Z., Brown, M. F., Tollin, G., and Hruby, V. J., Biophys. J. 88, 198–210. https://doi.org/10.1529/biophysj.104.046722

2004

  • Deuterium NMR Structure of Retinal in the Ground State of Rhodopsin2004 ;Salgado, G. F. J., Struts, A. V., Tanaka, K., Fujioka, N., Nakanishi, K., and Brown, M. F., Biochemistry 43, 12819-12828. https://doi.org/10.1021/bi0491191
  • Lanosterol and Cholesterol-Induced Variations in Bilayer Elasticity Probed by 2H NMR Relaxation2004 ;Martinez, G. V., Dykstra, E. M., Lope-Piedrafita, S., and Brown, M. F., Langmuir 20, 1043-1046. https://doi.org/10.1021/la036063n
  • Membrane Model for the GPCR Rhodopsin: Hydrophobic Interface and Dynamical Structure2004 ;Huber, T., Botelho, A. V., Beyer, K., and Brown, M. F., Biophys. J. 86, 2078-2100. https://doi.org/10.1016%2FS0006-3495(04)74268-X
  • Perturbation of the Hydrophobic Core of Lipid Bilayers by the Human Antimicrobial Peptide LL-372004 ;Henzler-Wildman, K. A., Martinez, G. V., Brown, M. F., and Ramamoorthy, A., Biochemistry 43, 8459-8469. https://doi.org/10.1021/bi036284s

2003

  • NMR Solution Structure of the Glucagon Antagonist [desHis1, desPhe6, Glu9]Glucagon Amide in the Presence of Perdeuterated Dodecylphosphocholine Micelles2003 ;Ying, J., Ahn, J.-M., Jacobsen, N. E., Brown, M. F., and Hruby, V. J., Biochemistry 42, 2825-2835. https://doi.org/10.1021/bi026629r

2002

  • Elastic Deformation of Membrane Bilayers Probed by Deuterium NMR Relaxation2002 ;Brown, M. F., Thurmond, R. L., Dodd, S. W., Otten, D., and Beyer, K., J. Am. Chem. Soc. 124, 8471-8484. https://doi.org/10.1021/ja012660p
  • NMR Elastometry of Fluid Membranes in the Mesoscopic Regime2002 ;Martinez, G. V., Dykstra, E. M., Lope-Piedrafita, S., Job, C., and Brown, M. F., Phys. Rev. E 66, 050902/1–050902/4. https://doi.org/10.1103/PhysRevE.66.050902
  • Anisotropic Motion and Molecular Dynamics of Cholesterol, Lanosterol, and Ergosterol in Lecithin Bilayers Studied by Quasi-elastic Neutron Scattering2002 ;Endress, E., Heller, H., Casalta, H., Brown, M. F., and Bayerl, T. M., Biochemistry 41, 13078-13086. https://doi.org/10.1021/bi0201670
  • Electrostatic Properties of Membrane Lipids Coupled to Metarhodopsin II Formation in Visual Transduction2002 ;Wang, Y., Botelho, A. V., Martinez, G. V., and Brown, M. F., J. Am. Chem. Soc. 124, 7690-7701. https://doi.org/10.1021/ja0200488
  • Structure of Docosahexaenoic Acid-Containing Bilayers as Studied by 2H NMR and Molecular Dynamics Simulations2002 ;Huber, T., Rajamoorthi, K., Kurze, V., Beyer, K., and Brown, M. F., J. Am. Chem. Soc. 124, 298-309. https://doi.org/10.1021/ja011383j
  • Conformational Energetics of Rhodopsin Modulated by Nonlamellar-forming Lipids 2002 ;Botelho, A. V., Gibson, N. J., Thurmond, R. L., Wang, Y., and Brown, M. F., Biochemistry 41, 6354-6368. https://doi.org/10.1021/bi011995g

2001

  • Composite Membrane Deformation on the Mesoscopic Length Scale 2001 ;Brown, M. F., Thurmond, R. L., Dodd, S. W., Otten, D., and Beyer , K., Phys. Rev. E 64, 010901/1-10901/4. https://doi.org/10.1103/physreve.64.010901
  • Structural Properties of Docosahexaenoyl Phospholipid Bilayers Investigated by Solid-State 2H NMR Spectroscopy2001 ;Petrache, H. I., Salmon, A. S., and Brown, M. F., J. Am. Chem. Soc. 123, 12611-12622. https://doi.org/10.1021/ja011745n

2000

  • Softening of Membrane Bilayers by Detergents Elucidated by Deuterium NMR Spectroscopy2000 ;Otten, D., Brown, M. F., and Beyer, K., J. Phys. Chem. B 104, 12119-12129. https://doi.org/10.1021/jp001505e
  • Area per Lipid and Acyl Length Distributions in Fluid Phosphatidylcholines Determined by 2H NMR Spectroscopy2000 ;Petrache, H. I., Dodd, S. W., and Brown, M. F., Biophys. J. 79, 3172-3192 https://doi.org/10.1016%2FS0006-3495(00)76551-9