Osmotic stress studies of G-protein-coupled receptor rhodopsin activation; Andrey V. Struts, Alexander V. Barmasov, Steven D.E. Fried, Kushani S.K. Hewage, Suchithranga M.D.C. Perera, Michael F. Brown, Biophys. Chem., 304, (2024), 107112, ISSN 0301-4622, https://doi.org/10.1016/j.bpc.2023.107112
Efficient calculation of orientation-dependent lipid dynamics from membrane simulations; Milka Doktorova, George Khelashvili, Michael F. Brown, bioRxiv 2023.05.23.542012; doi: https://doi.org/10.1101/2023.05.23.542012
2023
Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2)2023 ;Doole, F.T., Gupta, S., Kumarage, T., Ashkar, R., Brown, M.F. (2023). Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2). In: Dantsker, A.R. (eds) Cholesterol and PI(4,5)P2 in Vital Biological Functions. Advances in Experimental Medicine and Biology, 1422. Springer, Cham. https://doi.org/10.1007/978-3-031-21547-6_2
Molecular simulations and NMR reveal how lipid fluctuations affect membrane mechanics2023 ;Milka Doktorova, George Khelashvili, Rana Ashkar and Michael F. Brown, (2023) Bio Phys. J. 122, 984-1002, https://doi.org/10.1016/j.bpj.2022.12.007
2022
Cholesterol Stiffening of Lipid Membranes2022 ;Fathima T Doole, Teshani Kumarage, Rana Ashkar, Michael F Brown, J Membr Biol. 2022, 255(4-5):385-405. doi: https://doi.org/10.1007/s00232-022-00263-9.
Phospholipid headgroups govern area per lipid and emergent elastic properties of bilayers2022 ;Trivikram R. Molugu, Robin L. Thurmond, Todd M. Alam, Theodore P. Trouard, and Michael F. Brown (2022) Bio phys J. 121, 4205-4220, https://doi.org/10.1016/j.bpj.2022.09.005
Hydration-mediated G-protein–coupled receptor activation2022 ;Steven D. E. Fried , Kushani S. K. Hewage, Anna R. Eitel, Andrey V. Strutsa, Nipuna Weerasinghe, Suchithranga M. D. C. Perera, and Michael F. Browna (2022) Proc. Natl. Acad. Sci. U.S.A, 119, e2117349119, https://doi.org/10.1073/pnas.2117349119
Cholesterol stiffening of lipid membranes and drug interactions: Insights from neutron spin echo and deuterium NMR spectroscopy2022 ;Chapter 29 Sudipta Gupta. Fathima T. Doole, Teshani Kumarage, Milka Doktorova, George Khelashvili, Rana Ashkar, Michael F. Brown (2022), Academic Press, Cholesterol From Chemistry and Biophysics to the Clinic, 771-796, https://doi.org/10.1016/B978-0-323-85857-1.00037-7
2021
Activation of the G-Protein-Coupled Receptor Rhodopsin by Water2021 ;Udeep Chawla, Suchithranga M. D. C. Perera, Steven D. E. Fried, Anna R. Eitel, Blake Mertz, Nipuna Weerasinghe, Michael C. Pitman, Andrey V. Struts and Michael F. Brown, (2021) Angew. Chem. Int. Ed., 60, 2288–2295, https://doi.org/10.1002/anie.202003342
Membrane Curvature Revisited—the Archetype of Rhodopsin Studied by Time-Resolved Electronic Spectroscopy2021 ;Steven D. E. Fried, James W. Lewis, Istvan Szundi, Karina Martinez-Mayorga, Mohana Mahalingam, Reiner Vogel, David S. Kliger, and Michael F. Brown (2021) Biophys. J.120, 440–452, https://doi.org/10.1016/j.bpj.2020.11.007
Native mass spectrometry reveals the simultaneous binding of lipids and zinc to rhodopsin2021 ;Carolanne E. Norris, James E. Keener, Suchithranga M.D.C. Perera, Nipuna Weerasinghe, Steven D.E. Fried, William C. Resager, James G. Rohrbough, Michael F. Brown, Michael T. Marty (2021) International Journal of Mass Spectrometry,460, 116477, https://doi.org/10.1016/j.ijms.2020.116477
2020
Nicotinamide phosphoribosyltransferase purification using SUMO expression system; Molugu, T. R., Oita, R. C., Chawla, U., Camp, S. M., Brown, M. F., Garcia, J. G. N. (2020) Analytical Biochemistry596 113597, https://doi.org/10.1016/j.ab.2020.113597
Rhodopsin activation in lipid membranes based on solid-state NMR spectroscopy2020 ;Perera, S. M. D. C. ,Xu, X.,Molugu, T. R., Struts, A. V., Brown, M. F. (2020) G. C. K. Roberts, A. Watts (eds.), Encyclopedia of Biophysics, https://doi.org/10.1007/978-3-642-35943-9_788-2
How cholesterol stiffens unsaturated lipid membranes 2020 ;Saptarshi Chakraborty, Milka Doktorova, Trivikram R. Molugu, Frederick A. Heberle, Haden L. Scott, Boris Dzikovski, Michihiro Nagao, Laura-Roxana Stingaciu, Robert F. Standaert, Francisco N. Barrera, John Katsaras, George Khelashvili, Michael F. Brown, and Rana Ashkar, Proc. Nat. Acad. Sci. 117 21896-21905. https://doi.org/10.1073/pnas.2004807117
2019
Cholesterol Effects on the Physical Properties of Lipid Membranes Viewed by Solid-state NMR Spectroscopy2019 ;Molugu T.R., Brown M.F. (2019) In: Rosenhouse-Dantsker A., Bukiya A. (eds) Cholesterol Modulation of Protein Function. Adv. Exp. Med. Biol., 1115, 99-133. https://doi.org/10.1007/978-3-030-04278-3_5
Quantum Mechanical and Molecular Mechanics Modeling of Membrane‑Embedded Rhodopsins2019 ; Ryazantsev, M. N., Nikolaev, D. M., Struts, · A. V., Brown · M. F. (2019) J. Membr. Biol. 252, 425–449. https://doi.org/10.1007/s00232-019-00095-0
Collective dynamics in lipid membranes, Brown, M. F. (2019) In Mu-Ping Nieh, Frederick A. Heberle, John Katsaras (Eds.), Characterization of Biological Membranes: Structure and Dynamics (pp. 231–268). Berlin, Boston: De Gruyter. ISBN: 9783110544640
2018
Small-angle neutron scattering reveals energy landscape for rhodopsin photoactivation ;Perera, S.M.D.C., Chawla,U., Shrestha,U.R., Bhowmik, D.,Struts, A.V., Qian, S., Chu, X.-Q. and Brown,M.F. (2018) J. Phys. Chem. Lett.9, 7064−7071. https://doi.org/10.1021/acs.jpclett.8b03048
Synthesis of 9-CD3-9-cis-retinal cofactor of isorhodopsin; Navidi, M., Yadav, S., Struts, A. V., Brown, M. F., Nesnas, N. (2018) Tetrahedron Lett., 59, 4521-4524. https://doi.org/10.1016/j.tetlet.2018.11.034
Solid-State 2H NMR Studies of Water-Mediated Lipid Membrane Deformation ;Molugu T.R., Xu X., Lee S., Mallikarjunaiah K.J., Brown M.F. (2018) In: Webb G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_143
2017
Solid-State Deuterium NMR Spectroscopy of Rhodopsin ; Perera S.M., Xu X., Molugu T.R., Struts A.V., Brown M.F. (2017) In: Webb G. (eds) Modern Magnetic Resonance. Springer, Cham https://doi.org/10.1007/978-3-319-28275-6_144-1
Solid-State Deuterium NMR Spectroscopy of Membranes ;Molugu,T.R., Xu, X., Leftin, A., Lope-Piedrafita, S., Martinez, G.V., Petrache, H.I., Brown, M.F.(2017) In: Webb G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_89-1
Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes ;Molugu, T.R., Lee, S., Brown, M.F. (2017) Chem. Rev., 117 , 12087–12132. https://doi.org/10.1021/acs.chemrev.6b00619
Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level2016 ;Molugu, T. R., Brown M. F. (2016) Chem. Phys. Lipids, 199, 39-51 https://doi.org/10.1016%2Fj.chemphyslip.2016.05.001
Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods2016 ;Struts, A. V., Barmasov, A. V. and Brown, M. F. (2016) Opt. Spectrosc., 120, 298–306, https://doi.org/10.1134/s0030400x15050240
A Usual G-Protein-Coupled Receptor in Unusual Membranes ;Chawla, U., Jiang, Y., Zheng, W., Kuang, L., Perera, S. M. D. C., Pitman, M. C., Brown, M. F. and Liang H. (2016) Angew. Chem. Int. Ed. 55, 588 –592. https://doi.org/10.1002%2Fanie.201508648
Quasi-elastic Neutron Scattering Reveals Ligand-Induced Protein Dynamics of a G-Protein-Coupled Receptor; Shrestha, U. R., Perera, S. M. D. C., Bhowmik, D., Chawla, U., Mamontov, E., Brown, M. F. and Chu, X. -Q. (2016) J. Phys. Chem. Lett.,7, 4130−4136. https://doi.org/10.1021%2Facs.jpclett.6b01632
Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy; Struts, A. V., Barmasov, A. V. and Brown, M. F. (2015) Optics and Spectroscopy, Vol. 118, 711–717. https://doi.org/10.1134/S0030400X15050240
Elastic Deformation and Area Per Lipid of Membranes: Atomistic View From Solid-State Deuterium NMR Spectroscopy2015 ;Kinnun, J. J., Mallikarjunaiah, K. J., Petrache, H. I., and Brown, M. F. (2015), Biochim. Biophys. Acta1848, 246–259. https://doi.org/10.1016/j.bbamem.2014.06.004
Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy; Struts, A. V., Chawla, U., Perera, S. M. D. C., and Brown, M. F. (2015),in Methods in Molecular Biology 1271, Jastrzebska, B. (Ed.), Springer, pp. 133–158 (invited book chapter). https://doi.org/10.1007/978-1-4939-2330-4_10
2014
Generalized Model-Free Analysis of Nuclear Spin Relaxation Experiments2014 ;Xu, X., Struts, A. V., and Brown, M. F. (2014),eMagRes3, 275–286 (invited review). https://doi.org/10.1002/9780470034590.emrstm1367
Phospholipid Bilayer Membranes: Deuterium and Carbon-13 NMR Spectroscopy2014 ;Leftin, A., Xu, X., and Brown, M. F. (2014),eMagRes3, 199–214 (invited review). https://doi.org/10.1002/9780470034590.emrstm1368
Structural Dynamics of Retinal in Rhodopsin Activation Viewed by Solid-State 2H NMR Spectroscopy, in Advances in Biological Solid-State NMR: Proteins and Membrane- Active Peptides2014 ;Struts, A. V., and Brown, M. F. (2014), The Royal Society of Chemistry, Cambridge, pp. 320– 352. https://doi.org/10.1039/9781782627449-00320
Retinal ligand mobility explains internal hydration and reconciles active rhodopsin structures ;Leioatts, N., Mertz, B., Martínez-Mayorga, K., Romo, T. D., Pitman, M. C., Feller, S. E., Grossfield, A., and Brown, M. F. (2014),Biochemistry53, 376–385. https://doi.org/10.1021/bi4013947
Area per lipid and cholesterol interactions in membranes from separated local-field 13C NMR spectroscopy2014 ;Leftin, A., Molugu, T. R., Job, C., Beyer, K., Brown, M. F. (2014),Biophys. J.107, 2274–2286. https://doi.org/10.1016%2Fj.bpj.2014.07.044
2013
Solid-State NMR Spectroscopy for the Undergraduate Physical Chemistry Laboratory ;Kinnun, J. J., Leftin, A., and Brown, M. F., J. Chem. Ed.90, 123−128. https://doi.org/10.1021/ed2004774
Activation of Rhodopsin Based on Solid-State NMR Spectroscopy ;Struts, A. V., and Brown, M. F., in Encyclopedia of Biophysics, Roberts, G. C. K. (Ed.), Springer-Verlag, Heidelberg, pp. 2231–2243.
Solid-state 13C NMR Reveals Annealing of Raft-Like Membranes Containing Cholesterol by the Intrinsically Disordered Protein α-Synuclein ;Leftin, A., Job, C., Beyer, K., and Brown, M. F., J. Mol. Biol.425, 2973–2987. https://doi.org/10.1016/j.jmb.2013.04.002
Retinal Conformation Governs pKa of Protonated Schiff Base in Rhodopsin Activation; Zhu, S., Brown, M. F., Feller, S. E., J. Am. Chem. Soc.135, 9391−9398. https://doi.org/10.1021/ja4002986
2012
Molecular Simulations and Solid-State NMR Investigate Dynamical Structure in Rhodopsin Activation2012 ;Mertz, B., Struts, A. V., Feller, S. E., and Brown, M. F., Biochim. Biophys. Acta1818, 241–251. https://doi.org/10.1016%2Fj.bbamem.2011.08.003
UV–Visible and Infrared Methods for Investigating Lipid–Rhodopsin Membrane Interactions 2012 ;Brown, M. F., in Methods in Molecular Biology, Klein-Seetharaman, J., and Nagarajan, V. (Eds.), Springer, pp. 127–153 https://doi.org/10.1007%2F978-1-62703-023-6_8
Curvature Forces in Membrane Lipid-Protein Interactions 2012 ; Brown, M. F., Biochemistry51, 9782−9795. https://doi.org/10.1021%2Fbi301332
Molecular Dynamics Simulations Reveal Specific Interactions of Posttranslational Palmitoyl Modifications with Rhodopsin in Membranes 2012 ;Olausson, B. E. S., Grossfield, A., Pitman, M. C., Brown, M. F., Feller, S. E., and Vogel, A., J. Am. Chem. Soc.134, 4324−4331. https://doi.org/10.1021/ja2108382
2011
Solid-State 2H NMR Demonstrates Correspondence of Hydrostatic and Osmotic Pressures in Lipid Membrane Deformation 2011 ;Mallikarjunaiah, K. J., Leftin, A., Kinnun, J. J., Justice, M. J., Rogozea, A. L., Petrache, H. I., and Brown, M. F., Biophys. J.100, 98-107. https://doi.org/10.1016%2Fj.bpj.2010.11.010
Steric and Electronic Influences on the Torsional Energy Landscape of Retinal2011 ;Mertz, B., Lu, M., Brown, M. F., and Feller, S. E., Biophys. J.101, L17-L19. https://doi.org/10.1016/j.bpj.2011.06.020
Solid-State 2H NMR Relaxation Illuminates Functional Dynamics of Retinal Cofactor in Membrane Activation of Rhodopsin2011 ;Struts, A. V., Salgado, G. F. J., and Brown, M. F., Proc. Natl. Acad. Sci. U.S.A.108, 8263-8268. https://doi.org/10.1073%2Fpnas.1014692108
Retinal Dynamics Underlie Inverse-Agonist to Agonist Switch in Rhodopsin Activation2011 ;Struts, A. V., Salgado, G. F. J., Martínez-Mayorga, K., and Brown, M. F., Nature Struct. Mol. Biol.18, 392-394. https://doi.org/10.1038%2Fnsmb.1982
2010
Sequential Rearrangement of Interhelical Networks Upon Rhodopsin Activation in Membranes: The Meta IIa Conformational Substate 2010 ; Zaitseva, E., Brown, M. F., and Vogel, R., J. Am. Chem. Soc.132, 4815-4821. https://doi.org/10.1021%2Fja910317a
The N-Terminus of α-Synuclein Triggers Membrane Binding and Helix Folding2010 ;Bartels, T., Ahlstrom, L. S., Leftin, A., Kamp, F., Haass, C., Brown, M. F., and Beyer, K., Biophys. J.99, 1-9. https://doi.org/10.1016/j.bpj.2010.06.035
Retinal Dynamics During Light Activation of Rhodopsin Revealed by Solid-State NMR Spectroscopy 2010 ;Brown, M. F., Salgado, G. F. J., Struts, A. V., Biochim. Biophys. Acta1798, 177-193. https://doi.org/10.1016%2Fj.bbamem.2009.08.013
2009
Retinal Conformation and Dynamics in Activation of Rhodopsin Illuminated by Solid-State 2H NMR Spectroscopy2009 ;Brown, M. F., Martínez-Mayorga, K., Nakanishi, K., Salgado, G. F. J., and Struts, A. V., Photochem. Photobiol.85, 442-453 https://doi.org/10.1111%2Fj.1751-1097.2008.00510.x
Phase Separation in Binary Mixtures of Bipolar and Monopolar Lipid Dispersions Revealed by 2H NMR Spectroscopy, Small Angle X-Ray Scattering, and Molecular Theory2009 ;Brownholland, D., Longo, G. S., Struts, Matthew J., Justice, M. J., Szleifer, I., Petrache, H. I., Brown, M. F., Thompson, D. H., Biophys. J.97, 2700-2709. https://doi.org/10.1016%2Fj.bpj.2009.06.058
2008
Bolalipid Membrane Structure Revealed by Solid-State 2H NMR Spectroscopy 2008 ;Holland, D. P., Struts, A. V., Brown, M. F., and Thompson, D. H., J. Am. Chem. Soc.130, 4584–4585. https://doi.org/10.1021%2Fja710190p
Fluid Mechanical Matching of H+-ATP Synthase Subunit c Ring with Lipids in Membranes Revealed by 2H Solid-State NMR 2008 ;Kobayashi, M., Struts, A. V., Fujiwara, T., Brown, M. F., Akutsu, H., Biophys. J.94 , 4339–4347. https://doi.org/10.1529/biophysj.107.123745
Two Protonation Switches Control Rhodopsin Activation in Membranes 2008 ;Mahalingam, M., Martínez-Mayorga, K., Brown, M. F., Vogel, R., Proc. Natl. Acad. Sci. U.S.A.105 17795-17800. https://doi.org/10.1073/pnas.0804541105
Raft–like Mixtures of Sphingomyelin and Cholesterol Investigated by Solid-State 2H NMR Spectroscopy2008 ;Bartels, T., Bittman, R., Beyer, K., and Brown, M. F., J. Am. Chem. Soc.44, 14521-14532. https://doi.org/10.1021/ja801789t
Reconstitution of Rhodopsin into Polymerizable Planar Supported Lipid Bilayers: Influence of Dienoyl Monomer Structure2008 ;Subramaniam, V., D’Ambruoso, G., Hall, H. K., Jr., Wysocki, R. J., Brown, M. F., Saavedra, S. S., Langmuir 24, 11067-11075. https://doi.org/10.1021%2Fla801835g
Ultra-High Vacuum Surface Analysis Study of Rhodopsin Incorporation into Supported Lipid Bilayers2008 ;Michel, D., Subramaniam, V., McArthur, S., Bondurant, B., D’Ambruoso, G. D., Hall, H. K., Jr., Brown, M. F., Ross, E. E., Saavedra, S. S., Castner, D. G., Langmuir24, 4901–4906. https://doi.org/10.1021/la800037r
2007
Structural Analysis and Dynamics of Retinal Chromophore in Dark and Meta I States of Rhodopsin from 2H NMR of Aligned Membranes2007 ;Struts, A. V., Salgado, G. F. J., Fujioka, N., Nakanishi, K., and Brown, M. F., J. Mol. Biol.372, 50–66. https://doi.org/10.1016/j.jmb.2007.03.046
X-ray Scattering and Solid-State 2H NMR Probes of Structural Fluctuations in Lipid Membranes 2007 ;Petrache, H. I., and Brown, M. F., in Methods in Membrane Lipids, Dopico, A. (Ed.), Humana Press, Totowa, pp. 339-351. https://doi.org/10.1007/978-1-59745-519-0_23
Flexibility of Ras Lipid Modifications Studied by 2H Solid-State NMR and Molecular Dynamics Simulations2007 ;Vogel, A., Tan, K.-T., Waldmann, H., Feller, S. E., Brown, M. F., and Huster, D., Biophys. J.93, 2697–2712. https://doi.org/10.1529%2Fbiophysj.107.104562
Dynamic Structure of Retinylidene Ligand of Rhodopsin Probed by Molecular Simulations2007 ;Lau, P.-W., Grossfield, A., Feller, S. E., Pitman, M. C., and Brown, M. F., J. Mol. Biol.372, 906–917 https://doi.org/10.1016%2Fj.jmb.2007.06.047
Synthesis of CD3-labeled 11-cis-Retinals and Applications to Solid-State Deuterium NMR Spectroscopy of Rhodopsin 2007 ;Tanaka, K., Struts, A. V., Krane, S., Fujioka, N., Salgado, G. F. J., Karina Martínez-Mayorga, K., Brown, M. F., and Koji Nakanishi, K. , Bull. Chem. Soc. Japan80, 2177-2184. http://dx.doi.org/10.1246/bcsj.80.2177
Solid-State 2H NMR Spectroscopy of Retinal Proteins in Aligned Membranes2007 ;Brown, M. F., Heyn, M. P., Job, C., Kim, S., Moltke, S., Nakanishi, K., Nevzorov, A. A., Struts, A. V., Salgado, G. F. J., Wallat, I., Biochim. Biophys. Acta1768, 2979–3000. https://doi.org/10.1016/j.bbamem.2007.10.014
2006
Retinal Counterion Switch Mechanism in Vision Evaluated by Molecular Simulations2006 ;Martínez-Mayorga, K., Pitman, M. C., Grossfield, A., Feller, S. E., and Brown, M. F., J. Am. Chem. Soc.28, 16502-16503. https://doi.org/10.1021/ja0671971
Solid-State 2H NMR Structure of Retinal in Metarhodopsin I2006 ;Salgado, G. F. J., Struts, A. V., Tanaka, T., Krane, S., Nakanishi, K., and Brown, M. F., J. Am. Chem. Soc.128, 11067–11071. https://doi.org/10.1021/ja058738+
Solid-State Deuterium NMR Spectroscopy of Membranes 2006 ;Brown, M. F., Lope-Piedrafita, S., Martinez, G. V., and Petrache, H. I., in: Modern Magnetic Resonance, Webb, G. A. (Ed.), Springer, Heidelberg, pp. 245-256
Curvature and Hydrophobic Forces Drive Oligomerization and Modulate Activity of Rhodopsin in Membranes 2006 ;Botelho, A. V., Huber, T., Sakmar, T. P., and Brown, M. F., Biophys. J.91, 4464-4477. https://doi.org/10.1529%2Fbiophysj.106.082776
2005
Packing and Elasticity of Polyunsaturated w-3 and w-6 Phospholipids as Determined by 2H NMR Spectroscopy and X-Ray Diffraction 2005 ;Rajamoorthi, K., Petrache, H. I., McIntosh, T. J., and Brown, M. F., J. Am. Chem. Soc.127, 1576–1588. https://doi.org/10.1021/ja046453b
Lipid Modifications of a Ras Peptide Exhibit Altered Packing and Mobility Versus Host Membrane as Detected by 2H Solid-State NMR 2005 ;Vogel, A., Katzka, C. P., Waldmann, H., Arnold, K., Brown, M. F., and Huster, D., J. Am. Chem. Soc.127, 12263-12272. https://doi.org/10.1021/ja051856c
Rhodopsin Reconstituted into a Planar-Supported Lipid Bilayer Retains Photoactivity after Cross-Linking Polymerization of Lipid Monomers 2005 ;Subramaniam, V., Alves, I. D., Salgado, G. F. J., Lau, P.-W., Wysocki, Jr., R. J., Salamon, Z., Tollin, G., Hruby, V. J., Brown, M. F., and Saavedra, S. S., J. Am. Chem. Soc.127, 5320-5321. https://doi.org/10.1021/ja0423973
Phosphatidylethanolamine Enhances Rhodopsin Photoactivation and Transducin Binding in a Solid-Supported Lipid Bilayer as Determined Using Plasmon-Waveguide Resonance Spectroscopy 2005 ;Alves, I. D., Salgado, G. F. J., Salamon, Z., Brown, M. F., Tollin, G., and Hruby, V. J., Biophys. J.88, 198–210. https://doi.org/10.1529/biophysj.104.046722
2004
Deuterium NMR Structure of Retinal in the Ground State of Rhodopsin2004 ;Salgado, G. F. J., Struts, A. V., Tanaka, K., Fujioka, N., Nakanishi, K., and Brown, M. F., Biochemistry43, 12819-12828. https://doi.org/10.1021/bi0491191
Lanosterol and Cholesterol-Induced Variations in Bilayer Elasticity Probed by 2H NMR Relaxation2004 ;Martinez, G. V., Dykstra, E. M., Lope-Piedrafita, S., and Brown, M. F., Langmuir20, 1043-1046. https://doi.org/10.1021/la036063n
Membrane Model for the GPCR Rhodopsin: Hydrophobic Interface and Dynamical Structure2004 ;Huber, T., Botelho, A. V., Beyer, K., and Brown, M. F., Biophys. J.86, 2078-2100. https://doi.org/10.1016%2FS0006-3495(04)74268-X
Perturbation of the Hydrophobic Core of Lipid Bilayers by the Human Antimicrobial Peptide LL-372004 ;Henzler-Wildman, K. A., Martinez, G. V., Brown, M. F., and Ramamoorthy, A., Biochemistry43, 8459-8469. https://doi.org/10.1021/bi036284s
2003
NMR Solution Structure of the Glucagon Antagonist [desHis1, desPhe6, Glu9]Glucagon Amide in the Presence of Perdeuterated Dodecylphosphocholine Micelles2003 ;Ying, J., Ahn, J.-M., Jacobsen, N. E., Brown, M. F., and Hruby, V. J., Biochemistry42, 2825-2835. https://doi.org/10.1021/bi026629r
2002
Elastic Deformation of Membrane Bilayers Probed by Deuterium NMR Relaxation2002 ;Brown, M. F., Thurmond, R. L., Dodd, S. W., Otten, D., and Beyer, K., J. Am. Chem. Soc.124, 8471-8484. https://doi.org/10.1021/ja012660p
NMR Elastometry of Fluid Membranes in the Mesoscopic Regime2002 ;Martinez, G. V., Dykstra, E. M., Lope-Piedrafita, S., Job, C., and Brown, M. F., Phys. Rev. E66, 050902/1–050902/4. https://doi.org/10.1103/PhysRevE.66.050902
Anisotropic Motion and Molecular Dynamics of Cholesterol, Lanosterol, and Ergosterol in Lecithin Bilayers Studied by Quasi-elastic Neutron Scattering2002 ;Endress, E., Heller, H., Casalta, H., Brown, M. F., and Bayerl, T. M., Biochemistry41, 13078-13086. https://doi.org/10.1021/bi0201670
Electrostatic Properties of Membrane Lipids Coupled to Metarhodopsin II Formation in Visual Transduction2002 ;Wang, Y., Botelho, A. V., Martinez, G. V., and Brown, M. F., J. Am. Chem. Soc.124, 7690-7701. https://doi.org/10.1021/ja0200488
Structure of Docosahexaenoic Acid-Containing Bilayers as Studied by 2H NMR and Molecular Dynamics Simulations2002 ;Huber, T., Rajamoorthi, K., Kurze, V., Beyer, K., and Brown, M. F., J. Am. Chem. Soc.124, 298-309. https://doi.org/10.1021/ja011383j
Conformational Energetics of Rhodopsin Modulated by Nonlamellar-forming Lipids 2002 ;Botelho, A. V., Gibson, N. J., Thurmond, R. L., Wang, Y., and Brown, M. F., Biochemistry41, 6354-6368. https://doi.org/10.1021/bi011995g
2001
Composite Membrane Deformation on the Mesoscopic Length Scale 2001 ;Brown, M. F., Thurmond, R. L., Dodd, S. W., Otten, D., and Beyer , K., Phys. Rev. E64, 010901/1-10901/4. https://doi.org/10.1103/physreve.64.010901
Structural Properties of Docosahexaenoyl Phospholipid Bilayers Investigated by Solid-State 2H NMR Spectroscopy2001 ;Petrache, H. I., Salmon, A. S., and Brown, M. F., J. Am. Chem. Soc.123, 12611-12622. https://doi.org/10.1021/ja011745n
2000
Softening of Membrane Bilayers by Detergents Elucidated by Deuterium NMR Spectroscopy2000 ;Otten, D., Brown, M. F., and Beyer, K., J. Phys. Chem. B104, 12119-12129. https://doi.org/10.1021/jp001505e
Area per Lipid and Acyl Length Distributions in Fluid Phosphatidylcholines Determined by 2H NMR Spectroscopy2000 ;Petrache, H. I., Dodd, S. W., and Brown, M. F., Biophys. J.79, 3172-3192 https://doi.org/10.1016%2FS0006-3495(00)76551-9