Neri, P., Gu, L., and Song, Y*.: The effect of temperature on photosystem II efficiency across plant functional types and climate, Biogeosciences, 21, 2731–2758, https://doi.org/10.5194/bg-21-2731-2024, 2024.
Gu, L., Grodzinski, B., Han, J., Marie, T., Zhang, Y., Song, Y., Sun, Y., 2023. An exploratory steady‐state redox model of photosynthetic linear electron transport for use in complete modelling of photosynthesis for broad applications. Plant, Cell & Environment.. https://doi.org/10.1111/pce.14563
Lin, T., Kheshgi, H.S, Song, Y., Vorosmarty C. J., and Jain A., K. (2023), Which crop has the highest bioethanol yield in the United States? Frontiers in Energy Research. https://doi.org/10.3389/fenrg.2023.1070186
Gu, L., Grodzinski, B., Han, J., Marie, T., Zhang, Y., Song, Y., Sun, Y. (2022), Granal thylakoid structure and function: explaining an enduring mystery of higher plants. New Phytologist. DOI: https://doi.org/10.1111/nph.18371.
Lin, T., Song, Y., Lawrence, P., Kheshgi, H.S., Jain, A.K. (2021). Worldwide Maize and Soybean Yield Response to Environmental and Management Factors Over the 20th and 21st Centuries. Journal of Geophysical Research: Biogeosciences 126.. doi:10.1029/2021jg006304.
Song Y, Yao Q, Yang X et al. Metagenomics-informed soil biogeochemical models projected less carbon loss in tropical soils in response to climate warming, 20 September 2021, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-918612/v1].
Lin, T-S, Song, Y., Jain, A K, Lawrence, P, and Kheshgi, H. S. (2020): Effects of environmental and management factors on worldwide maize and soybean yields over the 20th and 21st centuries, Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-68.
Yao Q, Li Z, Song Y, Wright J S, Guo X, Biswas A, Tringe S G, Tfazly M M , Pasa-Tolic L, Hazen C T, Turner L B, Mayes M and Pan C (2019) : Community proteogenomics reveals the systemic impact of Phosphorus availability on microbial functions in tropical soil, Nature Ecology & Evolution, 2: 499-509.
Johnston, R E, Kim M, Hatt K J, Phillips R J, Yao Q, Song Y, Hazen C T, Mayes A M and Konstantinidis T K (2019) : Phosphate addition increases tropical soil respiration primarily by deconstraining microbial population growth, Soil Biology and Biochemistry, 130: 43-54. [Link]
Song Y, Jain A K, Landuyt W, Kheshgi H S (2016): The interplay between bioenergy grass production and water resources in the United States of America, Environmental Science and Technology, 50(6) : 3010-3019. [PDF]
Fu Y H, Piao S, Ciais P, Huang M, Menzel A, Peaucelle M, Peng S, Song Y, Vitasse Y, Zeng Z, Zhao H, Zhou G; Peñuelas J; Janssens I A (2016): Long-term linear trends mask phenological shifts, International Journal of Biometeorology, 60(11) : 1611-1613.
Fu Y H, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Penuelas J, Song Y, Vitasse Y, Zeng Z, and Janssens I A (2016): Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526(7571), 104–107.
Song Y, Jain A K, Landuyt W, Kheshgi H S, and Khanna M (2014): Estimates of Biomass Yield for Perennial Bioenergy Grasses in the United States. Bioenergy Research, 8(2), 688-715. [PDF]
Niyogi D, Liu X, Andresen J, Song Y, Jain A K, Kellner O, Takle E S, Doering O C (2014): Crop Models can capture the impacts of climate variability on corn yield, Geophysical Research Letters, 42(9): 3356-3363.
Housh M, Cai X, Ng T, McIsaac G, Ouyang Y, Khanna M, Jain A, Eckhoff S, Gasteyer S, AI-Qadi I, Bai Y, Yaeger M, Ma S, and Song Y (2014): System of systems model for analysis of biofuel development. Journal of Infrastructure Systems, doi : 10.1061/(ASCE)IS.1943-555X.0000238
Song Y, Jain A K, and Mclsaac G F (2013): Implementation of dynamic crop growth processes into a land surface model : evaluation of energy, water and carbon fluxes under corn and soybean rotation. Biogeosciences, 10: 8039-8066. [PDF]
El-Masri B, Barman R, Meiyappan P, Song Y, Liang, M, and Jain, A K (2013): Carbon dynamics in the Amazonian Basin : Integration of eddy covariance and ecophysiological data with a land surface model. Agricultural and Forest Meteorology, 182 : 156-157.
Jain A K, Meiyappan P, Song Y, and House J I (2013) : CO2 emissions from land use change affected more by nitrogen cycle, than by the choice of land cover data. Global ChangeBiology, 19: 2893-2906.
Wang Z P, Song Y, Han X G, Yu Q, and Gulledge J (2009): China’s grazed temperate grassland are a net source of atmospheric methane. Atmospheric Environment, 13(43): 2148-2153.
Wang Z P, Han X G, Wang G G, Song Y, and Gulledge J (2008): Aerobic methane emission from plants in the Inner Mongolia steppe. Environmental Science and Technology, 42(1): 62-68.
Products
The Machine Learning model for predicting the omics-informed spatial distribution of soil enzyme functional classes
Continuum Microbial Enzyme Decomposition Model (CoMEND)